
Page 1 of 89

ADI @ADI_ACTIONS

Used to specify the actions and timing associated with ADI_SEND and ADI_REQUEST.

Keyword:
@ADI_ACTIONS

Usage:
Keyword used to specify the actions and timing associated with ADI_SEND and
ADI_REQUEST.

Data Fields:
start_type code to specify when the commands will be executed

success_path
code for what action to take when all commands have been
completed - options are NONE, MODE_TERMINATE, RETURN, a mode
number, or a test procedure pathname.

failure_path
code for what action to take if communications fail to
complete successfully - options are NONE, MODE_TERMINATE,
RETURN, a mode number, or a test procedure pathname.

Example Specification:
@ADI_ACTIONS
 #start_type success_path failure_path
 AT_START MODE_TERMINATION 99

Page 2 of 89

ADI @ADI_REQUEST

Used to support communication with the ADI breadboard development system.

Keyword:
@ADI_REQUEST

Usage:
Used to support communication with the ADI breadboard development system.

Data Fields:
variable Variable name received from ADI breadboard

ASSET variable CyFlex variable where value will be placed

Example Specification:
@ADI_REQUEST
 #variable CyFlex variable where value will be placed
 'css.adi_global_c::timeout' adi_req

Notes:

All of the specifications require that ECM variable names be enclosed in single quotes,
designating that they are a literal string.

Page 3 of 89

ADI @ADI_SEND

Used to support communication with the ADI breadboard development system.

Keyword:
@ADI_SEND

Usage:
Used to support communication with the ADI breadboard development system.

Data Fields:
variable code to specify when the commands will be executed

value
code for what action to take when all commands have been
completed - options are NONE, MODE_TERMINATE, RETURN, a mode
number, or a test procedure pathname.

Example Specification:
@ADI_SEND
 #variable value
 'css.adi_global_c::timeout' 2

Notes:

All of the specifications require that ECM variable names be enclosed in single quotes,
designating that they are a literal string.

Page 4 of 89

Support Tasks @AK_COMMAND

Send command to an AK device (ASAP Interface)

Keyword:
@AK_COMMAND

Usage:
Send a command to a device that supports the ASAP3 interface over a serial link (RS-232). The
command string will be parsed and converted to a string which the device can interpret. The
value ASAP should be provided for the instrument_name. The ASAP3 strings supported are
identified below. The sequence of use of the strings required on initialization is:

• init

• identify

• select

After that, the remaining commands may be used as desired. Monitoring allows measured
parameters to be continuously monitored by CyFlex and for their values to be placed in CyFlex
variables. It is recommended that a monclear command be issued before a new list is specified to
avoid transferring data that is not necessary, which would cause performance degradation.
Parameter sets and gets allow fixed parameters to be sent or received. This is supported while
monitoring is active or inactive.

The processes ASAPDrv and ASAPMgr are required to be operating to support the use of this
keyword. The commands /specs/cmds/start_ASAP3 and /specs/cmds/slay_ASAP3 start and stop
these processes.

 Data Fields:
@AK_COMMAND
 #start_type stop_code failure_action
 AT_START MODE_TERMINATE 99
 #instrument name
 ASAP
 #command key strings
 "command"

 Data field Meaning

 start_type code for when to send the command - options are AT_START
and AFTER-STABILITY

 stop_path
code for action to take when communication has completed
successfully - options are MODE_TERMINATE, NONE, RETURN,
a mode number, or a test procedure pathname

fail_path

code for execution path to take if communication fails or
an error is reported by the device - options are
MODE_TERMINATE, NONE, RETURN, a mode number, or a test
procedure pathname

instrument_name the device (should normally be ASAP)

Page 5 of 89

command strings a list of commands to execute in sequence

Command Strings:
The following command strings are supported:

 "timeout asset_var"
defines the CyFlex variable that contains the
timeout value

"init" initialize the interface with the device

"identify ASSET" identify the host

"select_file desc_file bin
file"

identify desc file and binary file, for ETAS
VS-100, these are the root names of the DAMOS
file and HEX file, respectively

"monclear" clear the monitor list

"monadd remote_par asset_var"
add monitor parameter, retrieving remote_par
and placing the value in asset_var

 "monon" start monitoring mode

"monoff" stop monitoring mode

 "getpar remote_var asset_var" get parameter value from remote system

"setpar remote_var asset_var" set parameter value in remote system

"emergency" emergency detected by CyFlex

 Example Specification:
 @AK_COMMAND
 #start_type stop_code failure_action
 AT_START MODE_TERMINATE ELSE_MODE
 #instrument name
 ASAP
 #command key strings

"timeout asap_to" #defines the variable that contains the timeout value

"init" #initialize the interface with the device

"identify ASSET" #identify the host

"select_file PL056201 PL056201" #identify desc file and binary file

"monclear" #clear the monitor list

"monadd efps_u_w efps_u_w" #add monitor parameter

 "monon" #start monitoring mode

"monoff" #stop monitoring mode

 "getpar RTMC_PHI_BIMI_CA phi_ca" #get parameter value from remote system

"setpar RTMC_PHI_BIMI_CB phi_enbl" #set parameter value in remote system

"emergency" #emergency detected by CyFlex

Page 6 of 89

ECM Communications @ASAP3_ACTIONS

Command used to communicate with an ASAP3 application running on TCP/IP connection.

Keyword:
@ASAP3_ACTIONS

Usage:

Data Fields:

start_code code for when to send the command - options are AT_START or
AFTER_STABILITY - default is AT_START

success_path
code for what action to take when communication is complete -
options are NONE, MODE_TERMINATE, RETURN, a mode number, or a
procedure file pathname - default is NONE

fail_path
code for what action to take if communication fails - options
are NONE, MODE_TERMINATE, RETURN, a mode number, or a
procedure file pathname - default is NONE

Example Specification:
@ASAP3_ACTIONS
 #start_code success_path fail_path
 AT_START MODE_TERMINATE /specs/gp/quit

Page 7 of 89

Support Tasks @ASC

Send command to asynchronous device.

Keyword:
@ASC

Usage:
Send a command to a device connected to a serial port. The command string will be parsed and
converted to a string which the device can interpret based on a configuration file. The
configuration file must be in /specs directory and must be named device.cfg, where device is the
same as that used in the @ASC specification. For this example, the file would be
/specs/pager.cfg.

Data Fields:

start_type code for when to send the command - options are AT_START,
AFTER_STABILITY, EXTERNAL_SYNC

stop_path
code for what action to take when communication is complete -
options are NONE, MODE_TERMINATE, RETURN, a mode number, or a
procedure file pathname.

fail_path
code for what action to take if communication fails - options
are NONE, MODE_TERMINATE, RETURN, a mode number, or a
procedure file pathname.

device basename of the device configuration file.

command command string

Example Specification:
@ASC
 #start_type stop_path fail_path device command
 AT_START NONE NONE pager "page 1999W 115 Wh0;"

Page number 1999 and send the code 115. This requires the proper specification file for paging
in /specs/pager.cfg.

Other Examples:
@ASC
 #start_type stop_path fail_path device command
 AT_START MODE_TERMINATE NONE calterm "run ram"

Send a command to a Calterm to have the ECM run from RAM. Terminate the mode when the
communication is complete.
@ASC
 #start_type stop_path fail_path device command
 AT_START NONE NONE modem "hang up"

Send a command modem device to hang up.

Page 8 of 89

ECM Communications @ATA_ACTIONS

Specify when to send ATA commands and options for completion and failure.

Keyword:
@ATA_ACTIONS

Usage:

This keyword is used to specify the actions and timing associated with all ATA communications
for a test mode. The start_type specifies when the commands will be executed, the
stop_path specifies what action will be taken when all commands have been completed, and
the fail_path specifies what to do if the communication fails to complete successfully.

Data Fields:

start_type code for when to send the message - options are
AT_START, AFTER_STABILITY

stop_path
code for what action to take when the communication is
complete - options are NONE, MODE_TERMINATE, RETURN, a
mode number, or a procedure file pathname.

fail_path

code for what action to take if there is a failure to
communicate with the ECM - options include NONE,
MODE_TERMINATE, RETURN, a mode number, or a procedure
file pathname.

Example Specification:
@ATA_ACTIONS
 #start_type stop_path fail_path
 AT_START MODE_TERMINATE /specs/gp/comm_fail

Start sending the ATA commands at the start of the mode, terminate the mode when all are
complete, and if there is a failure, go to the test mode specified by the @ELSE_MODE keyword.

Notes:

This keyword is used only when there are other ATA communication commands such as
@ATA_SEND, @ATA_REQUEST, and @ATA_COMMAND_MESSAGE.

Page 9 of 89

ECM Communications @ATA_COMMAND_MESSAGE

Send a data_command to the ECM.

Keyword:
@ATA_COMMAND_MESSAGE

Usage:

The following command codes are supported.

command_code function

RUN_FROM_DEV run from Development (RAM)

FAULT_CODE_ERASE erase fault codes

STOP_BCST stop broadcasting

START_PB_BCST Start public broadcasting

RUN_FROM_EEPROM run from Default (EEPROM)

STOP_ENGINE stop engine

Data Fields:

command_code code for the message

Example Specification:
@ATA_COMMAND_MESSAGE
 #command_code
 RUN_FROM_EEPROM

Issue the command to run from EEPROM and terminate the mode when a reply is received.

 Other Examples:
@ATA_COMMAND_MESSAGE
 #command_code
 STOP_BCST

Issue a command to the ECM to stop broadcasting.
@ATA_COMMAND_MESSAGE
 #command_code
 START_PB_BCST

Issue a command to the ECM to start broadcasting.

Page 10 of 89

ECM Communications @ATA_MODIFY_BITS

Toggle a single bit in an ECM variable.

Keyword:
@ATA_MODIFY_BITS

Usage:

The bit number of a particular ECM variable can be set to 0 or 1.

Data Fields:

ecm_variable name The ECM variable name as defined in an E2M file.

bit_number a number from 0 to 15. Zero is the most significant bit.

value 0 (off) or 1 (on)

Example:

 @ATA_MODIFY_BITS
 #ecm_variable bit_number value
 'ECM_VAR' 2 1

Page 11 of 89

ECM Communications @ATA_RAMP

Ramp an ECM value.

Keyword:
@ATA_RAMP

Usage:

The value in the ECM will be updated every second until the end_target is reached. If the
ramp_rate is not specified, then the ramp rate is computed from the mode time. The targets
and ramp rate may be constants, variables, or expressions. The ECM variable may be a literal
string, or a string variable. The literal string must be surrounded by single quotes. The targets
and ramp rate may be constants, variable labels, or computed expressions. The computed
expressions must be surrounded by double quotes. Communication of values to the ECM is
somewhat different than setting the value of a CyFlex variable. The value is transmitted as a
string and has no units associated with it. Because of this, constants in the target or ramp_rate
fields should be entered without units. Hex values should be preceded by "0x". See
@ATA_SEND for more detailed discussion of format requirements for values sent to the ECM.

As with the @ATA_SEND keyword, each communication with the ECM that is a request to
change a value in the ECM is automatically followed by a request to read it back. If the read-
back does not agree with the value sent, an error message will be generated.

Data Fields:

ECM_variable the name of the variable in the ECM or string variable

start_target the starting value of the ramp

end_target the ending value of the ramp

ramp_rate the ramp rate in units/second

Example Specification:
@ATA_RAMP

 #ECM_variable start_target end_target ramp_rate(optional)

 'USC_FUEL' 200 240 1

 'USC_ADV' RampStart RampEnd RampRate

 myECMvar "mystart + inc" "myend + inc"

Page 12 of 89

ECM Communications @ATA_RAMP_INTERVAL

Rate at which ECM values is updated.

Keyword:
@ATA_RAMP_INTERVAL

Usage:

Allows the specification of the rate at which ECM values will be updated during the
@ATA_RAMP operation.

Data Fields:

interval Rate in which an ECM value is updated during the @ATA_RAMP
operation

Example Specification:
@ATA_RAMP_INTERVAL
 #interval
 1[sec]

Page 13 of 89

ECM Communications @ATA_REQUEST

Read a value from the ECM.

Keyword:
@ATA_REQUEST

Usage:

Send a message to the ECM, requesting the value of a particular ECM variable.

Data Fields:

ECM_variable the name of the variable in the ECM or a CyFlex string
variable which contains the ECM variable name

ASSET_variable the name of the variable where the result will be placed

Example Specification:
@ATA_REQUEST
 #ECM_variable ASSET_variable
 ‘TVO’ tvo

Send a message requesting the value of the TVO variable.

Other Examples:
@ATA_REQUEST
 #ECM_variable ASSET_variable
 ‘TVO’ tvo
 ‘TVC’ tvc
 ‘ALPHA’ alpha

Read the values of tvo, tvc, and alpha from the ECM. Terminate the mode when all three
values have been read.

Page 14 of 89

ECM Communications @ATA_SEND

Update a variable in the ECM.

Keyword:
@ATA_SEND

Usage:

A message is sent to the ECM via the ATA communication link to modify the value of a
particular ECM variable.

The ECM_variable may be a literal string, designated with single quotes, or it may be a string
variable label which contains the ECM variable name. The string variable name must not be
enclosed in quotes.

The value may be a constant, variable label, or expression. Constants may be expressed as a
decimal value or as hex, as appropriate for the particular variable. Hex values must be preceded
by the characters 0x (0xFF) or enclosed in single quotes (‘FF’).

If the value is expressed as a variable label, then the variable label cannot begin with "0x". The
value sent to the ECM for a variable will be a decimal number unless the variable is a string
variable. For a string variable, the contents of the variable are sent as is.

If the value is an expression, then the value sent to the ECM will always be a decimal number.

Each message that is sent to the ECM to change the value of an ECM variable is automatically
followed by a message to read the value of the variable. If the value read back does not match the
value sent, then a single retry is attempted. If the value does not agree a second time, an error
message is generated.

Data Fields:

ECM_variable the name of the variable in the ECM or a string variable
containing the name

value the new value of the ECM variable or a variable containing the
value, or an expression which computes the value

Page 15 of 89

Example Specification:
@ATA_SEND
 #ECM_variable value
 ‘USC_FUEL’ 350

Change the value of the variable USC_FUEL to 350.

Other Examples:
@ATA_SEND
 #ECM_variable value
 # change the value of USC_FUEL to the value of the CyFlex variable,
myTVO
 ‘USC_FUEL’ myTVO

 # change the value of USC_ADV to the sum of CyFlex variables, myTVC and
 # TVCincrement
 ‘USC_ADV’ "myTVC + TVCincrement"

 # change the value of CYL_CUTM to hex FF
 ‘CYL_CUTM’ ‘FF’

 # change the value of CYL_CUTO to hex EC
 ‘CYL_CUTO’ 0xEC

 # change the value of the ECM variable which is contained in the CyFlex string
 # variable, myECMvar to the value contained in the CyFlex variable myECMvalue
 myECMvar myECMvalue

Modify several variables in the ECM.

Page 16 of 89

Support Tasks @AUXILIARY_TASK

Start an auxiliary support task.

Keyword:
@AUXILIARY_TASK

Usage:

This keyword is used to spawn a special type of support task called an "auxiliary" task. This task
can perform some special support function for the test scheduler, but must be designed to accept
start, and stop messages and must return a reply message which signals success or failure.

Data Fields:

start_type code for when to send a "start" signal to the task. Options
are AT_START, AFTER_STABILITY, EXTERNAL_SYNC, NONE

stop_path
code for what action to take when the auxiliary task
completes its function. Options are NONE, MODE_TERMINATE,
RETURN, a mode number, or a procedure file pathname.

fail_path

code for what action to take when the auxiliary task signals
that is has failed to accomplish its function. Options are
NONE, MODE_TERMINATE, RETURN, a mode number, or a procedure
file pathname.

task_pathname the auxiliary task name

command_line
arguments for the auxiliary task (enclose the command line
in quotes)

Page 17 of 89

Example Specification:
@AUXILIARY_TASK

 #start_type stop_path fail_path

 AT_START MODE_TERMINATE /specs/gp/gp_idle

 #task_pathname command_line

 /asset/bin/engine_start "/specs/starter.407"

Spawn the engine start task with specifications for how to start in file /specs/starter.407. Branch
to the gp_idle procedure if the engine fails to start.

Notes:

The command line must be enclosed in double quotes and may contain more than one argument,
depending on the particular task.

Other Examples:
@AUXILIARY_TASK

 #start_type stop_path fail_path

 AT_START MODE_TERMINATE 23

 #task_pathname command_line

 /asset/bin/engine_start "/specs/starter.407"

Spawn the engine_start task. Jump to mode 23 if the engine fails to start
@AUXILIARY_TASK
#start_type stop_type failure action

AT_START MODE_TERMINATE ELSE_MODE

/asset/bin/vrbl_to_file "/specs/vrbls_tvo READ run_index"

 #start_type stop_path fail_path

 AT_START MODE_TERMINATE ELSE_MODE

 #task_pathname command_line

 /asset/bin/vrbl_to_file "/specs/vrbls_tvo Read run_index"

Spawn the variable to file task and branch to the ELSE mode if there is a failure.

Page 18 of 89

Support Tasks @BACKGROUND_TASK

Execute a command or task in the background.

Keyword:
@BACKGROUND_TASK

Usage:

Any command or task can be executed in the background. No synchronization or error checking
is performed.

Data Fields:

start_type code for when to execute the command - options are AT_START,
AFTER_STABILITY

command the command string (enclose in quotes)

Example Specification:
@BACKGROUND_TASK
#start_type command
AT_START "/asset/bin/meterlog"

Execute the meterlog command.

Notes:

The command string must be enclosed in double quotes and may include several arguments.

Other Examples:
@BACKGROUND_TASK
 #start_type command
 AT_START "/specs/cmds/my_script"
 AT_START "rm /data/PC_format/my_log"
 AFTER_STABILITY "cp /data/PC_format/my_log /dos/a/mylog"

Issue the hotkey command and remove the my_log file at mode start. After stabilization is
complete remove copy the mylog file to a DOS floppy in drive a:

Page 19 of 89

Engine Control @CONTROL_TOLERANCE

Specify the tolerance of a control variable.

Keyword:
@CONTROL_TOLERANCE

Usage:

This specification sets the tolerance parameter for a control variable. The value is not modified
when the mode terminates.

Data Fields:

variable variable label or macro for speed and torque. Options are
SPEED_VAR and TORQUE_VAR.

tolerance control tolerance (units required)

Example Specification:
@CONTROL_TOLERANCE
 #variable tolerance
 SPEED_VAR 50[rpm]
 TORQUE_VAR 20[lb_ft]
 int_man_f 5[deg_f]

Page 20 of 89

Creation @CREATE_EVENT

Create events that will be used during a specific gp_test.

Keyword:
@CREATE_EVENT

Usage:

This keyword was created in response to the amount of volume and complexity that has been
created in limit_specs.NNN. Sometimes it is advantageous to have created events that exist only
during the duration of a specific test.

Data Fields:

event_name The name of the event to be created

Example Specification:
@CREATE_EVENT
 #event_name
 my_event1
 my_event2
The events my_event1 and my_event2 are created with this keyword. Up to 16
events can be created per test procedure

Notes:

The events in this specification must be unique or an error will occur.

The events created from a @CREATE_EVENTS are placed in the Engineering Units Buffer
when an "NT" command is issued and exist until the next "nt" occurs. Whenever an "nt" is
issued, all of the existing events, which were created by that instance of gp_test, are destroyed.
Then when the new files are read, any events specified in those procedures are created. If you
slay "gp_test", the created events will remain until a new "nt" is received.

 Special Note:
The keyword @CREATE_EVENT is similar to @GLOBAL_EVENTS and
@REGISTERED_EVENTS. The @CREATE_EVENT must be placed in the header section of a
test procedure file somewhere between the "start_mode" and the first @MODE.

Page 21 of 89

Creation @CREATE_EXPRESSION

Create computed expressions that will be used during a specific gp_test.

Keyword:
@CREATE_EXPRESSION

Usage:
This keyword was created in response to the amount of volume and complexity that has been
created in gen_labels.NNN. Sometimes it is advantageous to have computed expressions that
exist only during the duration of a specific test.

Data Fields:
variable The variable name of label used

type The variable can be REAL, INTEGER, LOGICAL or STRING

units The type of units to be used with the created variable.

event/timer The event name or timer designation that will evaluate the
expression

expression The computed expression to be used

Example Specification:
@CREATE_EXPRESSION
#(up to 16 per procedure)
@label type units event/time expression
myvar REAL rpm 1000 "if RPM>Idle_Speed then 700[rpm] else
Idle_Speed
mydesc STRING - 1000 "'test'+count"

The variable myvar is created as a REAL with rpm as its units and evaluated once a second. The
expression states that if RPM is greater than the value of Idle_Speed then set myvar to a value of
700 rpm otherwise set it to the value of Idle_Speed. The variable mydesc is created as a string
variable that includes the value of test added to count.
 Notes:
This keyword is the functional equivalent of gen_labels.NNN. However,
@CREATE_EXPRESSION does not support a history flag, tolerance and a display format. The
display format defaults to 2 places for REAL variables. The true/false descriptions of LOGICAL
variables default to ON/OFF. The history flag is OFF and the default tolerance is 1.0. The
variable in a @CREATE_EXPRESSION specification will be created if it doesn't already exist.
If it does exist, but there is no computed expression associated with it, then the computed
expression will be created, If the variable already exists and has a computed expression, then an
error is reported. The use of the @CREATE_EXPRESSION keyword causes gp_test to spawn
the new task named "comptest".

Special Note:
The keyword @CREATE_EXPRESSION must be placed in the header section of a test
procedure file somewhere between the "start_mode" and the first @MODE.

Page 22 of 89

 Creation @CREATE_TRANSITION_EVENTS

Create associated events to a logical variable that will be used during a specific gp_test.

Keyword:
@CREATE_TRANSITION_EVENTS

Usage:

This keyword was created in response to the amount of volume and complexity that has been
created in gen_labels.NNN. Sometimes it is advantageous to create logical events that exist only
during the duration of a specific gp_test.

Data Fields:

logical_variable_label The logical variable name. Its transition status
will spawn true and false events

true_event_name The name of the event that is spawned when the
logical variable goes from FALSE to TRUE

false_event_name The name of the event that is spawned when the
logical variable goes from TRUE to FALSE

Example Specification:
@CREATE_TRANSITION_EVENT
 #logical_variable_label true_event_name false_event_name
 mystate my_state_on my_state_off

The variable mystate will spawn an event called mystate_on when the logical goes from an OFF
to ON state. The event mystate_off will be spawned when the variable mystate goes from a
logical ON to OFF. Up to 16 transition events can be created per test procedure.

Notes:

The logical_variable_label must be created using the @CREATE_VAR keyword. The transition
events created exist in the Engineering Units Buffer when the "nt" command is issued and
remain there until the next "nt" command is issued. If you slay "gp_test", the created event will
remain until a new "nt" is received.

 Special Note:

The keyword @CREATE_TRANISITION_EVENT is similar to @GLOBAL_EVENTS and
@REGISTERED_EVENTS. The @CREATE_TRANISITION_EVENT must be placed in the
header section of a test procedure file somewhere between the "start_mode" and the first
@MODE.

Page 23 of 89

Creation @CREATE_VAR

Create variables that will be used during a specific gp_test.

Keyword:
@CREATE_VAR

Usage:

This keyword was created in response to the amount of volume and complexity that has been
created in gen_labels.NNN. Sometimes it is advantageous to have variables that exist only
during the duration of a specific gp_test.

Data Fields:

variable The variable name or label used

type The variable can be REAL, INTEGER, LOGICAL or STRING

units The type of units to be used with the created variable

initial value The initial value to be used with the created variable

Example Specification:
@CREATE_VAR
 #(up to 16 variables per procedure)
 #label type units initial_value
 mynewx REAL psi -
 count INT none 2
 mystate LOGI none OFF
 mysting STING - "up to 80 characters"

The variable mynewx is created as a REAL with psi as its units with no initial value. The
variable count is created as an INTEGER with units set to none and an initial value of 2. The
variable mystate becomes a LOGICAL set to an initial value of OFF. The variable mystring is
created as a STRING that can include a message up to 80 characters long.

 Notes:

The variables in this specification must be unique or an error will occur. The variables created
from a @CREATE_VAR are placed in the Engineering Units Buffer when an "nt" command is
issued and exist until the next "nt" occurs. Whenever an "nt" is issued, all of the existing
variables, which were created by that instance of gp_test, are destroyed. When the new files are
read, any variables specified in those procedures are created. Note that, unlike gen_labels.NNN,
the previous value of the variable is not preserved. The '-' symbol means 0 or OFF for the initial
value. It does not mean "keep the current value".

Special Note:

The keyword @CREATE_VAR is similar to @GLOBAL_EVENTS and
@REGISTERED_EVENTS. The @CREATE_VAR must be placed in the header section of a
test procedure file somewhere between the "start_mode" and the first @MODE.

Page 24 of 89

ECM Communications @CUTY_ACTIONS

Command used to communicate with a CUTY application running on TCP/IP connection.

Keyword:
@CUTY_ACTIONS

Usage:

Data Fields:

start_code code for when to send the command - options are AT_START or
AFTER_STABILITY - default is AT_START

success_path
code for what action to take when communication is complete -
options are NONE, MODE_TERMINATE, RETURN, a mode number, or a
procedure file pathname - default is NONE

fail_path
code for what action to take if communication fails - options
are NONE, MODE_TERMINATE, RETURN, a mode number, or a
procedure file pathname - default is NONE

Example Specification:
@CUTY_ACTIONS
 #start_code success_path fail_path
 AT_START MODE_TERMINATE /specs/gp/quit

Page 25 of 89

CyberApps @CYBER

Issue commands to change the operating parameters of a Cyber Application.

Keyword:
@CYBER

Usage:

Issue a command to the Cyber application or to the CyberServer. The command code will
determine the action taken.

Data Fields:

command A command key - see the table below.

name The system or component name

 value The system or component value

Cyber Commands Arguments

CA_APPLICATION <application_name><application_file>

CA_COMPONENT <component_name><component_file>

CA_PARAMETER <parameter_name><parameter_value>

CA_LOAD <cyberapps_name>

CA_RUN

CA_PAUSE

CA_STOP

CA_BEGIN_CONFIG

CA_END_CONFIG

Example Specification:
@CYBER
#command name value
CA PAUSE
CA_COMPONENT 'route' 'Indy38thSt'
CA_PARAMETER 'VehMass' 75000[lbs]
CA_RUN

The above commands configure CyberTruck to use the 38th Street route and set the truck mass
to 75000 pounds.

Page 26 of 89

CyberApps @CYBER_ACTIONS

Issue action commands to the @CYBER keyword.

Keyword:
@CYBER_ACTIONS

Usage:

This keyword directs when the command will take place during the mode. If the commands fail,
then an alternate path may be taken.

Data Fields:

start_code
At what point during the mode should execution of the commands
begin

success_path If all commands are successful, then…

failure_path If a command fails, then…

start_code_options

AT_START At the beginning of the mode

AT_END At the end of the mode

AT_START_AND_END At the beginning and ending of the mode

AFTER_STABILITY
After Stability has been achieved.

(See @STABILITY_SPECS)

 success_path and
failure_path options

NULL The NULL designates 'does not apply'

MODE_TERMINATE Allow the mode to end and execute the
default_next_mode

RETURN Return to the calling gp_test procedure

90 Mode to mode 90 of this test

/specs/gp/gp_Cainit2 Execute the gp_test called gp_Cainit2

Page 27 of 89

Example Specification:
@CYBER_ACTIONS
#start_code success_path failure_path
 AT_START MODE_TERMINATE 90

The above command orders the @CYBER keyword to execute its commands at the beginning of
the mode. If any commands fail then move to mode 90 of the test. If all commands are
successful, then allow the mode to terminate and execute the default next mode.

Page 28 of 89

Engine Control @DYNO

Specify the dyno controller mode & open_loop position.

Keyword:
@DYNO

Usage:

This specification selects the dyno controller mode to be either OPEN_LOOP or
CLOSED_LOOP. If the mode is CLOSED_LOOP, then only the control_mode data field is
required and the target values are ignored. If the mode is OPEN_LOOP, then the start_target
must be specified. The end_target is optional. If the start and end targets are both entered and are
different, then the controller output will be ramped linearly over the mode time_out interval. The
targets are always expressed as percent of full scale output.

If CLOSED_LOOP is specified, then the dyno is controlled as specified with the
@ENGINE_CONTROL_MODE keyword.

Data Fields:

control_mode open/closed loop (OPEN_LOOP or CLOSED_LOOP)

start_target used only if mode is open_loop, units must be % of full scale

end_target used only if mode is open_loop and ramping is required, units
must be % of full scale

Example Specification:
@DYNO
#control_mode start_target end_target
OPEN_LOOP 0[%] 50[%]

Ramp the dyno excitation from 0 to 50% over the mode interval.

Notes:

The start and end targets may be constants, variable labels, or expressions. Expressions must be
enclosed in double quotes. Units are required for all constants.

Other Examples:
@DYNO
 #control_mode start_target end_target
 OPEN_LOOP 0[%]

Turn the dyno excitation off.
@DYNO
 #control_mode start_target end_target
 CLOSED_LOOP

Set the dyno controller to closed loop mode.

Page 29 of 89

Branching @ELSE_MODE

Specify an alternate path to execute next.

Keyword:
@ELSE_MODE

Usage:

This specified path is an alternate to the normal next_mode. It will be executed only if certain
conditions are met, such as the failure of the conditional tests. Use the "RETURN" macro to
return to a calling procedure.

Data Fields:

mode_number
the mode or test procedure to execute as an alternate next
mode

Example Specification:
@ELSE_MODE
 #mode_number/procedure
 91

Use mode 91 as the next_mode if conditions dictate.

Notes:

An alternate path is usually specified as an option with the "ELSE_MODE" macro for fail_path
data fields. See @AUXILIARY_TASK for an example.

Also see the options for @STABILITY_ACTION. The alternate mode can be taken after
stabilization is complete.

Other Examples:
@ELSE_MODE
 #mode_number/procedure
 RETURN

Return to the calling procedure.
@ELSE_MODE
 #mode_number/procedure
 /specs/gp/gp_shutdown

Execute the gp_shutdown procedure as an alternate path.

Page 30 of 89

Outputs @EMAIL

Send an email message or pager message.

Keyword:
@EMAIL

Usage:

An email or page may be generated from a test procedure. This is usually used to inform
someone of the progress of a test or that something has gone wrong with the test, such as a
premature shutdown. The specification requires a "receiver" and a "message". The message may
be a short string such as "test done in tc115", or can be derived from a file. The "receiver" may
be any email address such as Joe_Engineer@notesbridge.cummins.com, or
JoeAtHome@aol.com. Three paging systems are supported with email type domain names.
1. Cummins 8800 Pager System

xxxx.cummins@assetpager.ctc.cummins.com (where xxxx is the pager number)

The message should be a numerical string that can be displayed by the pager such as "115".

2. Indiana Paging Network

xxxxxxx.indiana@assetpager.ctc.cummins.com

3. Skytel

xxxxxxx.skytel@assetpager.ctc.cummins.com

 Data Fields:

start_code
 code for when to send the message. Options are
AT_START, AT_END, and AFTER_STABILITY

receiver

 The intended recipients of the message. This may be a
literal string, the label of a string variable, or a
computed expression. The string may contain multiple
receivers.

message The message to be sent. This must be either a quoted
literal string or a filename.

Page 31 of 89

Example Specification:

There may be up to 4 separate specifications per test mode.
@EMAIL
 #start_code receiver message
 AT_START 'Len_Logterman@notesbridge.cummins.com' "help, I have fallen"
 AT_START User_email /specs/canned_msg

Send the message "help, I have fallen" to the Lotus Notes account of Len Logterman. The macro
'NOTES' can be substitued for 'notesbridge.cummins.com'. Send the message contained in the
file /specs/canned_msg to the address defined by the string variable User_email.

Notes:

Note that the variable User_email is initialized in the /specs/engine_specs.NNN file and should
be maintained by the user of the test system. It should always contain the email addresses of the
persons responsible for the test object (engine).

Other Examples:
@EMAIL
 #start_code receiver message
 AT_START '1400.cummins.assetpager.ctc.cummins.com'
"77500"
 AT_START "User_email + ' dick '
 /specs/canned_msg

Send the page 77500 to pager #1400.

Send the contents of the file /specs/canned_msg to "dick" on the Test System network email
system and to whatever email addresses are contained in the string variable User_email.

Page 32 of 89

Engine Control @ENGINE_CONTROL_MODE

Specify the method of engine control.

Keyword:
@ENGINE_CONTROL_MODE

Usage:

There are 6 possible methods of controlling an engine/dyno combination that are supported by
CyFlex. The methods differ from one another by which variable is the feedback for either the
throttle or dyno controller.
Options are:

1 or DYNO_DYNO_TORQUE_THROT_SPEED

2 or DYNO_NET_TORQUE_THROT_SPEED

3 or DYNO_OTHER_THROT_SPEED

4 or DYNO_SPEED_THROT_GROSS_TORQUE

5 or DYNO_SPEED_THROT_NET_TORQUE

6 or DYNO_SPEED_THROT_OTHER

Data Fields:

control_mode

Page 33 of 89

Example Specification:
@ENGINE_CONTROL_MODE
 #mode
 4

Set the control mode to 4, i.e., have the dyno control speed and have the throttle control gross
torque.

Notes:

mode control combination
1 dyno controlling dyno_torque, throttle controlling speed
2 dyno controlling net_torque, throttle controlling speed
3 dyno controlling some other variable, throttle controlling speed
4 dyno controlling speed, throttle controlling gross_torque
5 dyno controlling speed, throttle controlling net_torque
6 dyno controlling speed, throttle controlling some other variable

For non-motoring dynos, operation of the engine above idle speed with no load, requires that the
throttle be used for speed control. This requires that the engine_control_mode be changed to 2.

For high gain speed-control fuel pump governors, mode 2 may also be recommended.

Other Examples:
@ENGINE_CONTROL_MODE
 #mode
 2

Have the throttle control speed, dyno control torque.
@ENGINE_CONTROL_MODE
 #mode
 DYNO_SPEED_THROT_OTHER

Have the dyno control speed and the throttle control manifold pressure. The other variable, in
this case, manifold pressure is defined in the ctrl_specs.NNN file.

Page 34 of 89

Engine Control @FEED_FORWARD

Specify the feed-forward characteristics of a controller.

Keyword:
@FEED_FORWARD

Usage:

This specification is used to modify the feed-forward characteristics of a controller, including
turning feed-forward on and off, selecting the feed-forward variable and setting the feed-forward
gain. The selections remain in effect when the current mode is terminated.

Data Fields:

loop an index or variable label

active_flag flag indicating whether feed-forward is ON or OFF

FF_label the feed-forward variable

gain the feed-forward gain (constant, variable, or expression)

Example Specification:
@FEED_FORWARD
 #loop active_flag FF_label gain
 DYNO_CTRLER ON power 0.4
 THROT_CTRLER OFF
 int_man_t ON power .01

Page 35 of 89

Flowbench @FLOWBENCH

Command designed to control the TIMPELMAN head flow rigs.

Keyword:
@FLOWBENCH

Usage:

Data Fields:

device
Is one of the following:

VALVE_OPENER, TURNING_TABLE, FRAME_DRIVE, BLOWER

command

Is one of the following:

INIT, SET_REF, MOVE_POSITIVE_LIMIT, MOVE_NEGATIVE_LIMIT,
FIRST_STEP, NEXT_STEP, MOVE_TO_STEP, MOVE_TO_ABSOLUTE,
MOVE_TO_RELATIVE, STOP_MOVEMENT, STOP_BLOWER, START_BLOWER,
RETRY_BLOWER, RESET_FREQUENCY, RESET_PM

return variable

Label of an INTEGER variable that will contain the value of
the position manager response to the last command issued. The
last command issued will be any command that gets an error
return from the position manager on the last command in the
list. Any negative response from the position manager will
result in the "failure_path" being taken. For either success
or failure, the return variable will contain the position
manager response for the last command issued.

value(optional)
The value field can be a constant, variable label, or computed
expression. It is assumed that the units of the value sent to
the position manager are to be [mm].

Example Specification:
@FLOWBENCH
 #device command return variable value(optional)
 VALVE_OPENER SET_REF retn
 VALVE_OPENER MOVE_RELATIVE retn_valve 10[mm]

Page 36 of 89

Flowbench @FLOWBENCH_ACTIONS

Command designed to control the TIMPELMAN head flow rigs.

Keyword:
@FLOWBENCH_ACTIONS

Usage:

Data Fields:

start_code code for when to send the message - options are
AT_START, AFTER_STABILITY - default is AT_START

success_path

code for what action to take when the communication
is complete - options are NONE, MODE_TERMINATE,
RETURN, a mode number, or a procedure file pathname.
- default is NONE

fail_path
code for what action to take if there is a - options
include NONE, MODE_TERMINATE, RETURN, a mode number,
or a procedure file pathname. - default is NONE

Example Specification:
@FLOWBENCH_ACTIONS
 #start_code success_path fail_path
 AT_START MODE_TERMINATE /specs/gp/quit

Page 37 of 89

Data Acquisition @FR_LOG_FILE

Specify the data file for logging fuel readings.

Keyword:
@FR_LOG_FILE

Usage:

This keyword defines the data file that will be used to log fuel reading data in a columnar format
that is compatible with spreadsheets.

Data Fields:

file_pathname the full pathname of the data file

Example Specification:
@FR_LOG_FILE
 #file_pathname
 /data/fuel_log/fr_fuel_data

Log fuel reading data to the file /data/fuel_log/fr_fuel_data if the fr_log_enab flag is ON.

Notes:

The logging of fuel reading data can be turned on and off by setting the state of the variable
fr_log_enab. This data logging operation is entirely separate from PAM data files and transfers.

To enable logging, use:
set fr_log_enab ON

Page 38 of 89

Data Acquisition @FUEL_READING

Take fuel readings.

Keyword:
@FUEL_READING

Usage:

Take one or more fuel readings during this test mode. If the desired_time is 0 or "-", the time
specified by the variable target_fr_tim will be used.

The number_of_readings, interval, and desired_time data fields can all be specified as a constant,
variable label, or computed expression.

Data Fields:

start_type
code for when to send a start signal to the collector
task. Options are AT_START, AFTER_STABILITY,
EXTERNAL_SYNC

stop_path

code for what action to take when the fuel reading
collector task completes its function. Options are NONE,
MODE_TERMINATE,RETURN, a mode number, or a procedure file
pathname.

number_readings the number of fuel readings to request

interval the time between requests (if number_readings > 1)

sync_event an event name for external synchronization

desired_time the desired fuel reading sample time

Page 39 of 89

Example Specification:
@FUEL_READING

 #start_type stop_path

 AFTER_STABILITY MODE_TERMINATE

 #number_readings interval sync_event desired_time

 1 0[s] - 0[s]

Request 1 fuel reading after stabilization is complete. Terminate the mode when the fuel reading
is complete.

Notes:

Specifying a non-zero desired_time will change the value of the target_fr_tim variable.

Other Examples:
@FUEL_READING
 #start_type stop_path
 AFTER_STABILITY MODE_TERMINATE
 #number_readings interval sync_event desired_time
 num_read 5[min - 90[sec]

Take three fuel readings to be determined by the value of the variable num_read, at five minute
intervals, each 90 seconds long. Terminate the mode when all three fuel readings have been
completed.

Page 40 of 89

Data Acquisition @FUEL_READING_STATS

Take fuel samples until specified statistical criteria are met. This keyword is similar to
@FUEL_READING except that the number of readings taken may be variable and will depend
upon the specified statistical confidence requirements. Also, it is optional to have a single
composite datapoint transmitted to PAM which represents the mean value of the set of readings
which meet the confidence criteria. In addition, data which is grossly in error may be discarded
from the set as outliers.

Keyword:
@FUEL_READING_STATS

Usage:
Take one or more fuel readings during this test mode. If the desired_time is 0 or "-", the time specified by the variable
target_fr_tim will be used.

The number_of_readings, interval, and desired_time data fields can all be specified as a constant, variable label, or computed
expression.

Data Fields:

start_type
code for when to send a start signal to the collector
task. Options are AT_START, AFTER_STABILITY,
EXTERNAL_SYNC

stop_path

code for what action to take when the fuel reading
collector task completes its function. Options are NONE,
MODE_TERMINATE,RETURN, a mode number, or a procedure file
pathname.

number_readings
the maximum number of fuel readings - if reached, data
set is considered complete - a minimum of 3 readings will
be taken

interval the time between requests (if number_readings > 1)

sync_event an event name for external synchronization

desired_time the desired fuel reading sample time

dp_storage_method flag to save all readings as datapoints or only the
composite average - ALL=save all, ONE=composite only

outlier_significance

The probability of erroneously rejecting a good
observation. A value of 0.01 would mean that there is a
1% chance of rejecting a good reading. A low significance
level such as 0.01 is recommended. Levels greater than
0.05 should not be common practice.

deviation_min a minimum standard deviation from the mean to be
considered for outlier evaluation

Page 41 of 89

variable a variable for which confidence criteria will be
evaluated

confidence_interval an error band for the variable

confidence_level
 a probability that the maximum error lies within the
specified confidence_interval

target (not used at this time)

Example Specification:
@FUEL_READING_STATS
#start_type stop_path
 AT_START MODE_TERMINATE
#number_of_readings interval extern_sync_event desired_time
 4[none] 0.00[sec] - 2.5[min]
#save_type [ALL/ONE] #outlier_significance min_deviation
 ALL .0[none] .005[none]
#up to 32 variables may be listed
#variable confidence_interval confidence_level
target_value
FR_BSFC .001[lb/hp-hr] .95[none]
FR_RPM 5[rpm] .95[none]
speed_setpt

Request up to 10 fuel readings after stabilization is complete. Terminate the mode when enough readings have been to meet all
confidence criteria. Save all the individual readings as datapoints, unless they have identified as outliers.

Page 42 of 89

Data Acquisition @FUEL_READING_SYNC

This function provides the ability to synchronize several processes that are required to generate a
PAM datapoint. The keyword allows the construction of a chain of events that provide the
synchronization.

Keyword:
@FUEL_READING_SYNC

Usage:
This keyword allows multiple processes to be synchronized with fuel readings when multiple fuel readings have been requested
in a mode. The synchronization is handled externally from gp_test. The specification consists of a list of output events that will
be emitted in the sequence that they are listed. Each output event is emitted when all of the input events listed on its line and all
preceding lines have been received. This condition is overriden by the specified timeout (0 timeout indicates no timer). The
timeout for a particular line doesn't start until the output event on the previous line has been emitted. All input events are attached
at the time a fuel reading is requested, so if an input event of a later specification line is received before those of a preceding line,
it is still considered to be satisfied, but the corresponding output event would not be emitted until all those preceding it have been
emitted.

Note also, that the maximum specified delay for this entire process is the value of the variable "FR_wrte_delay". If that time
expires after the issuance "fr_ready", the datapoint will be written even if "fr_write_ok" is not received. For a better
understanding of the variables and events associated with fuel readings, refer to ASSET Gazette.6b.97-"Variables, Events, and
Processes associated with fuel readings"

Data Fields:

timeout
maximum wait time for the specified input events - the output
event is issued if this timeout expires before all of the
input events are received.

output_event
An event that will be set when all of the specified input
events are received or the timeout expires

input_events Up to 4 input events which must all be received before this
sequence in the chain is satisfied.

Example Specification:
@FUEL_READING_SYNC
#when all the input events have arrived, the output event is emitted
#and we go to the next spec. Keep doing that until the list is
#complete

#event_sync (event sequences required to complete a datapoint)
#max_timeout output_event input_event_list (up to 4)
 0[sec] TS_StrtAcq fr_ave_strt
 0[sec] TS_OpCondCmp HS_AcqInPrg fr_ready HS_AcqCmp
 0[sec] fr_write_ok HS_AnlsCmp

Notes:
"Fr_write_ok" should always be the last output event.

The "FR_write_delay" is automatically set to 4 minutes when @FUEL_READING_SYNC is used.

@FUEL_READING_SYNC can only be used in modes where @FUEL_READING or @FUEL_READING_STATS are also
used.

Page 43 of 89

Engine Controls @GET_FF_GAIN

Used to retrieve the current value of the feedforward gain.

Keyword:
@GET_FF_GAIN

Usage:

Data Fields:

loop
The label of a feedback variable if the loop is a user
loop or one of the following macros for dyno or throttle
control: DYNO_CTRLER, THROT_CTRLER, SECOND_DYNO_CTRLER

gain_label Label for variable to retrieve information about

Example Specification:
@GET_FF_GAIN
 #loop gain_label
 int_man_t int_ff_gain
 DYNO_CTRLER dyno_ff_gain

Page 44 of 89

Engine Controls @GET_PID_GAINS

Used to retrieve the current value of the gains and store them in real variables.

Keyword:
@GET_PID_GAINS

Usage:

Data Fields:

loop

prop_var

integral_var

derivative_var

Example Specification:
@GET_PID_GAINS
 #loop prop_var integral_var derivative_var
 DYNO_SPEED_GAINS dyno_pg dyno_ig dyno_dg
 THROT_GROSS_TORQUE_GAINS thrg_pg thrg_ig
 int_man_t int_pg int_ig int_dg

Page 45 of 89

Branching @IF_FALSE

A list of variables or expressions which must be FALSE to execute the mode.

Keyword:
@IF_FALSE

Usage:

This keyword is followed by 1 or more labels of logical variables or expressions which must all
be FALSE if the mode is to be executed. If any one of the variables is TRUE then the execution
path is determined by the @ELSE_MODE specification, if there is one. If no @ELSE_MODE is
specified then execution proceeds to the default_next_mode specified in with the @MODE
keyword.

Data Fields:

variable_labels valid labels of logical variables

Example Specification:
@IF_FALSE
 #variable_labels/expressions
 SpeedLT400

If SpeedLT400 is FALSE, execute this test mode.

Page 46 of 89

Branching @IF_TRUE

A list of variables or expressions which must be TRUE to execute the mode.

Keyword:
@IF_TRUE

Usage:

This keyword is followed by 1 or more labels of logical variables which must all be TRUE if the
mode is to be executed. If any one of the variables is FALSE then the path is determined by the
@ELSE_MODE specification, if there is one. If no @ELSE_MODE is specified then execution
proceeds to the default_next_mode specified in with the @MODE keyword.

Data Fields:

variable_labels valid labels of logical variables or expressions

Example Specification:
@IF_TRUE
 #variable_labels/expressions
 SpeedGT800
 tvo350
 "RPM < 1000[rpm]"

If both SpeedGT800 and tvo350 are TRUE and the RPM variable is less than 1000 rpm, then
execute this test mode.

Page 47 of 89

ECM Communications @KESET_ACTIONS

Command used to communicate with a KESET application running on TCP/IP connection.

Keyword:
@KESET_ACTIONS

Usage:

Data Fields:

start_code code for when to send the command - options are AT_START or
AFTER_STABILITY - default is AT_START

success_path
code for what action to take when communication is complete -
options are NONE, MODE_TERMINATE, RETURN, a mode number, or a
procedure file pathname - default is NONE

fail_path
code for what action to take if communication fails - options
are NONE, MODE_TERMINATE, RETURN, a mode number, or a
procedure file pathname - default is NONE

Example Specification:
@KESET_ACTIONS
 #start_code success_path fail_path
 AT_START MODE_TERMINATE /specs/gp/quit

Page 48 of 89

ECM Communications @KESET_GET

Command used to get a value for a specific variable from the ECM.

Keyword:
@KESET_GET

Usage:

Data Fields:
ECM_name The registered name for a kesettcp instance

ECM_variable

This is a string and may be a constant, variable label,
or computed expression - a constant must be expressed
as a literal string with single quotes. Note that the
ECM_variable label is a string, so that the label
should normally be enclosed with single quotes such as
'RUN_LOC'. If the ECM_variable is not quoted, then
gp_test will interpret that as the label of a CyFlex
string variable which contains the ECM_variable name

ASSET_label The label of the variable where the result will be
placed

Example Specification:
@KESET_GET
 #ECM_name ECM_variable ASSSET_label
 KTCP "'injector' + cyl_number" fixed_label

Page 49 of 89

ECM Communications @KESET_SET

Command used to set a value for a specific variable from the ECM

Keyword:
@KESET_SET

Usage:

Data Fields:
ECM_name The registered name for a kesettcp instance

ECM_variable

This is a string and may be a constant, variable label,
or computed expression - a constant must be expressed
as a literal string with single quotes. Note that the
ECM_variable label is a string, so that the label
should normally be enclosed with single quotes such as
'RUN_LOC'. If the ECM_variable is not quoted, then
gp_test will interpret that as the label of a CyFlex
string variable which contains the ECM_variable name

value
This may be a constant, variable label, or computed
expression

Example Specification:
@KESET_SET
 #ECM_name ECM_variable value
 KTCP 'Some_label' 100[none]

Page 50 of 89

Mode Termination @LIMIT_SPECS

Set a limit that will terminate the mode.

Keyword:
@LIMIT_SPECS

Usage:
Specifies a list of variables which may have limits set on them. Up to 32 variable specifications
may be used per keyword. If the limit is violated for the period specified, then the mode is
terminated. If the next_path field is 0 or "-", then the default_next_mode is executed, otherwise
control is passed to the mode or test procedure specified for the limit that was violated. The limit
value may be expressed as a constant, variable label, or computed expression.

Data Fields:
variable the real variable on which to set the limit

value the limit value (constant/variable/expression)

type upper or lower limit (U/L)

interval the rate at which to check the limit (FAS/MED/SLO)

period_out the period for which the limit must be violated before the
action is taken

next_path an optional path to execute if this limit is violated

Example Specification:
@LIMIT_SPECS
 #label value type interval period_out next_path
 RPM 2400[rpm] U MED 10[sec] /specs/gp/gp_shutdown
 oilrfl_p 60[psi] U MED 5[sec] /specs/gp/gp_reset;25

Set an upper limit of 2400 rpm on engine speed. Execute the gp_shutdown test procedure if this
is exceeded for at least 10 seconds continuously. If oil rifle pressure exceeds 60 psi for 5
seconds, then run the gp_test procedure starting in mode 25.

Notes:
The processing of the limit occurs only during the mode in which it is specified. It is enabled
when the mode starts and disabled when the mode terminates.

Violation of a limit will not cause the display to blink.

Other Examples:
@LIMIT_SPECS
 #label value type interval period next_path
 coolant_t 60[deg_F] U SLO 0[sec] 22
 RPM 400[rpm] L SLO 0[sec] /specs/gp/gp_done
 oil_p "oil_model-5[psi]" L SLO 0[sec] RETURN

Branch to mode 22 if the coolant temperature exceeds 260F during this test mode and jump to
procedure gp_done if the engine speed drops below 400 rpm.

If the oil_p variable is more than 5 psi below the oil_model variable, return to the calling
procedure.

Page 51 of 89

Mode Termination @LIMIT_SPECS_ALL

Specify a number of limits that will terminate the mode only if all are simultaneously violated.

Keyword:
@LIMIT_SPECS_ALL

Usage:

Specifies a list of variables with limits set on them. If the all of the limits are violated, then the
mode is terminated. If the next_path field is 0 or "-", then the default_next_mode path (in
@MODE) is executed, otherwise control is passed to the mode or test procedure specified for the
limit that was violated. The limit value may be expressed as a constant, variable label, or
computed expression.

Data Fields:

exit_path
The path to execute when/if all the specified limits are
simultaneously violated. This may be a mode number, a
procedure pathname, MODE_TERMINATE, or RETURN.

variable A variable on which the limit is set. This may be a real,
integer, statistical, property, or composition variable.

value the limit value (constant/variable/expression)

type upper or lower limit (U/L)

interval the rate at which to check the limit (FAS/MED/SLO)

period_out the period for which the limit must be violated before the
action is taken

next_path an optional path to execute if this limit is violated

 Example Specification:
@LIMIT_SPECS_ALL
 #exit_path
 MODE_TERMINATE
 #label value type interval period_out
 RPM 2400[rpm] U MED 10[sec]
 blow_by 10[in_h2o] U SLO 0[s]

Set an upper limit of 2400 rpm on engine speed and an upper limit of 10[in_h2o] on blow_by.
Terminate the test mode if both are violated.

Notes:

The processing of the limit occurs only during the mode in which it is specified. It is enabled
when the mode starts and disabled when the mode terminates.

Violation of a limit will not cause the display to blink.

Page 52 of 89

Branching & Looping @LOOP_CONTROL

Specify a repetitive looping operation.

Keyword:
@LOOP_CONTROL

Usage:

This specification is used to create loops of execution. It is placed in the last test mode of the
loop. There may be multiple loops in a procedure file and they may be nested. The loop counter
variable is optional. The loop count is zeroed when a test procedure is started. The num_repeats
field may be a constant, variable, or expression.

Data Fields:

num_repeats
the number of times the loop is to be repeated before
proceeding to the next_mode specified in @MODE_CONTROL

next_loop_mode the first test mode of the loop

loop_counter a variable which can be used to display or log the current
loop count

Example Specification:
@LOOP_CONTROL
 #num_repeats next_loop_mode loop_counter
 10 97 loop1

This is the last mode of a loop beginning at mode 97. The loop will be executed 10 times. The
current loop count will be placed in the variable loop1.

Notes:

If a loop_counter variable is specified, it must already exist. It is usually created in the
gen_labels.NNN specification file.

Other Examples:
@LOOP_CONTROL
 #num_repeats next_loop_mode loop_counter
 5 2

Loop back to mode 2, 5 times before proceeding to the next mode.
@LOOP_CONTROL
 #num_repeats next_loop_mode loop_counter
 cyc_cnt 97 lp3

Loop back to mode 97, a number of times determined by the value of the variable cyc_cnt before
proceeding to the next mode.

Page 53 of 89

Timing & Branching @MODE

Specify mode number, mode time, next mode and description.

Keyword:
@MODE

Usage:

This keyword is used to declare the maximum time for a test mode and the next mode to execute
when this mode is complete. This keyword must be present for every mode. A zero time-out or
dash, "-", indicates that the mode has indefinite length and will be terminated by some means
other than a simple time out. The timeout field may be either a constant, variable label, or
computed expression.

Data Fields:

mode_number (1-99)

time-out maximum time for the mode

default_next_mode the next mode to execute when this mode is complete

description 60 character description of the mode

Example Specification:
@MODE
 #mode_number time_out default_next_mode
 93 30[sec] 54
 #description
 shut the engine down

Spend 30 seconds in this mode and then jump to mode 54.

 Notes:

Use RETURN for the default_next_mode to return from a sub-procedure to the calling
procedure.

The mode description can be displayed on the monitor screen in any display group. The file
/specs/gp/gp_header must contain the definition for which display string will be used for the
description. This is usually TEST_DESC. If multiple copies of the test scheduler are operating as
might be the case if the computer is controlling two engines, then there will be two header files
in use and each must have a different display string specified. The second version would usually
use TEST_DESC_2. See chapter 1 of the Test Scheduler manual for a description of the header
file.

Other Examples:
@MODE
 #mode_number time_out default_next_mode
 93 my_time 54
 mode 93

Page 54 of 89

Timing & Branching @NO_RUN_PROCEDURE

Forces a procedure to be read into memory before it is actually executed.

Keyword:
@NO_RUN_PROCEDURE

Usage:

This is used to force a procedure to be read into memory before it is actually executed for cases
where the procedure name is a variable or is derived from a vrbl file. In cases such as that, the
name of a procedure is not actually known when the test is first started (when 'nt' is issued), and
it could take several seconds to read it during runtime. By forcing the read prior to start of the
test, this non0realtime issue can be avoided.

Data Fields:

pathname Name of the test procedure file to be read and loaded
into memory without running it in this mode.

Example Specification:
@NO_RUN_PROCEDURE
 #pathname
 proc_string

Page 55 of 89

Engine Control @OTHER_CTRL_VAR

Specify the "other" control variable target.

Keyword:
@OTHER_CTRL_VAR

Usage:
This specification selects the reference value for the "other" control variable. This may be the setpoint for
the throttle loop, depending on the engine control mode. It is meaningful only if the throttle controller is
in closed loop mode and the engine control mode is 6. The end_target and the ramp_rate are optional. If
the end target specified is different from start target and the ramp rate is not specified, then the ramp rate
is computed from the start and end targets and the mode timeout value.

Data Fields:
start_target the reference value at the start of the mode

end_target optional reference value at the end of the mode

ramp_rate optional rate at which to ramp from the start to end target
values

Example Specification:
@OTHER_CTRL_VAR
 #start_target end_target ramp_rate
 500[deg_f] 600[deg_f]

Ramp the "other" control variable from 500 to 600 degrees over the mode interval. This example would
be appropriate for something like a control of turbine inlet temperature by the throttle, with the dyno
controlling engine speed.

Notes:
The data fields may be constants, variable labels, or expressions. Constants must have units. The units
must be those of the control variable that has been specified in the ctrl_specs.NNN file. The units of
ramp_rate are entered in the same units. The denominator is assumed to be seconds. For example,
10[deg_f] would specify a ramp rate of 10 deg_f/sec.

If the ramp rate is specified such that the end target is reached before the mode terminates, then the
ramping stops when the end target is reached.

If the ramp rate is specified such that the end target is not achieved when the mode terminates, the
ramping may continues unless the next mode modifies the speed target.

Other Examples:
@OTHER_CTRL_VAR
 #start_target end_target ramp_rate
 30[in_hg]

Set the target pressure to 30 inches of mercury. This might be appropriate if the throttle is being used to
control boost pressure.
@OTHER_CTRL_VAR
 #start_target end_target ramp_rate
 boost_tar 10[psi] 1[psi]

Ramp from the value of the "boost_tar" variable to 10 psi pressure at a rate of 1 psi/sec.

Page 56 of 89

Engine Control @OUT_CHAN_CONFIG

Reconfigure a control output channel.

Keyword:
@OUT_CHAN_CONFIG

Usage:

Data Fields:

type

source

chan/out_label

bias

span/gain

filter

Example Specification:
@OUT_CHAN_CONFIG
 #type source chan/out_label bias span/gain filter
 AO Dyno_CM 17 0 100 0
 RV pp_cyl_p_CM prbs_out 0 2 0

Notes:

This is generally used to modify the bias or gain of a controller output signal. (see
ctrl_specs.nnn for current configuration)

Page 57 of 89

Data Acquisition @PAM_DATAPOINT

Create a datapoint without forcing a fuel reading.

Keyword:
@PAM_DATAPOINT

Usage:
Take one or more datapoints during this test mode. If the desired_time is 0 or "-", the time specified by the variable
target_fr_tim will be used. This is identical for @FUEL_READING except that the actual fuel sample is not taken.

The number_of_readings, interval, and desired_time data fields can all be specified as a constant, variable label, or
computed expression.

Data Fields:

start_type
code for when to send a start signal to the collector
task. Options are AT_START, AFTER_STABILITY,
EXTERNAL_SYNC

stop_path
code for what action to take when the support task
completes its function. Options are NONE, MODE_TERMINATE,
RETURN, a mode number, or a procedure file pathname.

number_readings the number of datapoints to request

interval the time between requests (when number_readings > 1)

sync_event an event name for external synchronization

desired_time the desired sample time

Example Specification:
@PAM_DATAPOINT
 #start_type stop_path
 AFTER_STABILITY MODE_TERMINATE
 #number_readings interval sync_event desired_time
 1 0.0[sec] - 0[sec]

Request 1 datapoint after stabilization is complete. Terminate the mode when the data collection is complete.

Notes:
Specifying a non-zero desired_time will change the value of the target_fr_tim variable.

Either @FUEL_READING or @PAM_DATAPOINT may be used in a particular test mode, but not both.

Other Examples:
@PAM_DATAPOINT
 #start_type stop_path
 AFTER_STABILITY MODE_TERMINATE
 #number_readings interval sync_event desired_time
 3 fr_int - 30[s]

Take 3 datapoints at an interval determined by the value of the fr_int variable, each 30 seconds long. Terminate the
test mode when all 3 datapoints have been completed.

Page 58 of 89

Data Acquisition @PAM_GROUP_LIST

Used to automatically generate a name or several names for a particular fuel reading or set of
fuel readings.

Keyword:
@PAM_GROUP_LIST

Usage:

The PAM database allows groups of datapoints to be "named" and then retrieved by the group
name. For example, all of the datapoints collected at rated speed might be named "1800rated",
or repeat datapoints collected for quality assurance purposes might be named "quality". This can
make the extraction of a set of data much simpler.

Nine string variable names have been reserved to stored group names. They are PAM_grp_1
through PAM_grp_9.

The @PAM_GROUP_LIST keyword should be used in the same mode where the fuel reading is
taken, since the evaluation of computed expressions will be done at the mode start. There may
be up to 9 group names assigned to a datapoint. The specification may be the label of a string
variable, a literal string (enclosed with single quotes) or a computed expression (enclosed with
double quotes). You may enter the different group names on 1 or more lines.

Data Fields:

Example Specification:
@PAM_GROUP_LIST
 #list of string variables for PAM group name(s)
 #(1 or more lines - up to 9 labels per line)
 #the entry may be a label, leteral string, or computed string
 PAM_grp_1 PAM_grp_2 PAM_grp_3 my_group
 'groupx' "PAM_grp_1 + test_mode"

Notes:

The group names in PAM are limited to 25 characters, even though a string variable may be 80
characters long. Only the first 25 characters of the string will be used for the group name.

Page 59 of 89

Outputs @PARAMETERS

Modify a CyFlex variable.

Keyword:
@PARAMETERS

Usage:

This specification allows any CyFlex variable to be modified during the course of a test. A list of
variables may be specified. For logical variables, if the value is a constant it should be expressed
as ON or OFF. Real variables must be specified with units.

Data Fields:

start_type code for when to set the value - options are AT_START,
AFTER_STABILITY, AT_END

variable a CyFlex variable label.

value
the new value of the variable. This may be a constant, or may
be obtained from another variable, or from a computed
expression.

Example Specification:
@PARAMETERS
 #start_type variable value
 AT_START tvo350 ON

Set the logical variable, tvo350 to the TRUE state when the test mode starts.

 Other Examples:
@PARAMETERS
 #start_type variable value
 AT_START tvo350 "if engine_spd > 400[rpm] TRUE else FALSE"
 AT_START my_var oil_rifle_p
 AT_START my_string ‘this is a string variable’
 AT_START NOTIFY " 'oil pressure is at ' + oil_rifle_p "

Set the value of variable tvo30 ON if the engine speed is above 400 rpm, otherwise, set if OFF.
Set the value of the variable my_var to be the same as the value of oil_rifle_p. Set the value of
the string variable, my_string, to‘this is a string variable’. If the oil pressure is 10 psi, the string
variable NOTIFY will be set to "oil pressure is at 10.0"

Page 60 of 89

Engine Control @PID_GAINS

Modify controller gain.

Keyword:
@PID_GAINS

Usage:

Modify the gains for a PID control loop. The gain changes remain in effect after the mode is
terminated. The gain values may be specified as a constant, variable, or computed expression.
The gain_set field may be either the label of a feedback variable if the loop is a user loop or one
of the following macros for dyno or throttle control:

DYNO_SPEED_GAINS

DYNO_DYNO_TORQUE_GAINS

DYNO_NET_TORQUE_GAINS

DYNO_OTHER_GAINS

THROT_GROSS_TORQUE_GAINS

THROT_NET_TORQUE_GAINS

THROT_SPEED_GAINS

THROT_OTHER_GAINS

Data Fields:

gain_set controller index or variable label

prop_gain proportional gain

int_gain integral gain

der_gain derivative gain

 Example Specification:
@PID_GAINS
 #gain_set prop_gain int_gain der_gain
 DYNO_SPEED_GAINS -.01[none] -.001[none] 0.0[none]
 THROT_GROSS_TORQUE_GAINS .01[none] .001[none] 0.0[none]
 int_manf_t .001[none] .001[none] 0.0[none]

Set the gains of the dyno controller, throttle controller, and the user loop controlling intake
manifold temperature.

Page 61 of 89

Support Tasks @PIERBURG_ACTIONS

Specifies optional actions for starting and exception conditions when using the
@PIERBURG_COMMANDS keyword.

Keyword:
@PIERBURG_ACTIONS

Usage:

Specify actions associated with Pierburg commands.

Data Fields:

start_type code for when to send a start signal to the collector task -
options are AT_START, AFTER_STABILITY

stop_path
code for what action to take when the auxiliary task completes
its function - options are NONE, MODE_TERMINATE, RETURN, a
mode number, or a procedure file pathname.

fail_path

code for what action to take when the auxiliary task signals
that is has failed to accomplish its function - options
include NONE, MODE_TERMINATE, RETURN, a mode number, or a
procedure file pathname.

Example Specification:
@PIERBURG_ACTIONS
 #start_type stop_path fail_path
 AT_START MODE_TERMINATE /specs/gp/pier_fail

Start sending commands to the Pierburg meter at the start of the test mode. Terminate the mode
when the communication is complete. Jump to the pier_fail procedure if there are any faults
detected with the communication.

Page 62 of 89

Support Tasks @PIERBURG_COMMANDS

Issue commands to a Pierburg smokemeter.

Keyword:
@PIERBURG_COMMANDS

Usage:
Send a command to a Pierburg smokemeter through a serial port.

Data Fields:
command command string

value an optional data value to be inserted into command string

return_value optional real variable where a result obtained from the meter
will be placed

Example Specification:
@PIERBURG_COMMANDS
 #command value return_value
 "get mean value" - pier_smk

Request the mean value of the last reading from the smokemeter.

Notes:
Command options are: (X is a variable)
get measured values get measured value get mean value
get maximum deviation get error code get condition
single measurement grey test white
balancing
black balancing stop flush
paper feed take measuring stroke toggle
measuring valve
change parameter X to Y
use inlet 1 use inlet 2 use inlet 3
means: X strokes: X idle strokes:
X
flushings: X flush time: X last flush
time: X
pause time: X error limit: X ao offset: X
ao range: X ao black
balancing: off
black balancing: on white balancing: off
white balancing: on light: measurement light: always
after flushing: off after flushing: on

Other Examples:
@PIERBURG_COMMANDS
 #command value return_value
 take measuring stroke

Command the meter to start a measuring cycle.

Page 63 of 89

Support Tasks @PIERBURG_CONFIG

 Support for multiple Pierburg smokemeters

 Keyword:
@PIERBURG_CONFIG

Usage:

If there is a need to run more than one Pierburg smoke meter in a test cell, this keyword allows
the specification of unique names for:

- the ASC configuration file

- the integer variable where condition codes are written

- the integer variable where error codes are written

- the diagnostic output filename

Data Fields:

name_stem the ASC configuration file name

condition_code the integer variable where condition codes are written

error_code the integer variable where error codes are written

error_file the diagnostic output filename

Example Specification:
@PIERBURG_CONFIG

#name_stem condition_code error_code error_File

pierburg PierCondCode PierErrCode /data/errors/pier_err_log

 Notes:

The @PIERBURG_CONFIG specification must be placed just above the @NAME keyword in
the header file (usually gp_header or pier_header). If only one Pierburg meter is used, no
changes are necessary to the header file. One difference, however, is that the diagnostic output
no longer goes to the console. Instead, the default output filename is /data/errors/pier_err_log

Page 64 of 89

Branching @PROCEDURE

Execute a sub-procedure.

Keyword:
@PROCEDURE

Usage:

Test procedures may call other test procedures. A particular test mode may consist of running a
complete sub-procedure through this keyword. The sub-procedure must specify a RETURN for
the default_next_mode to return to the calling procedure. The Test Scheduler supports up to 31
sub-procedures. Procedures are not re-entrant. That is, a procedure cannot be called again from
itself or from within another procedure that is called.

Data Fields:

file_name the full pathname of a separate test procedure

Example Specification:
@PROCEDURE
 #file_name
 /specs/gp/gp_setup

Run the procedure gp_setup.
@PROCEDURE
 #file_name
 /specs/gp/gp_start;25

Run the procedure gp_start and begin with mode 25.

 Notes:

The normal mode timeout is not used for a mode that includes the @PROCEDURE keyword. A
test mode which contains this keyword should not contain any other keywords which take some
kind of action. They will not be in effect. Only the following keywords can be used in the same
mode:

@IF_TRUE

@IF_FALSE

@SWITCH

@ELSE_MODE

The following tree illustrates an illegal sequence of procedure calls (gp_map is called a second
time before the first call returns to gp_root):

gp_root- gp_map- gp_fr- gp_map

Page 65 of 89

Outputs @RAMP

Ramp a variable.

Keyword:
@RAMP

Usage:

You may specify up to a total of 8 ramps in any mode. This limit applies to the total of all
@RAMP specs and all @RAMP_DYNAMIC specs.

There may only be a total of 16 ramping operations going on at the same time. This will include
the sum of all ramps generated with 'NONE' termination codes in previous test modes, plus all
ramps running in the current mode.

Data Fields:

variable Label of the target label

start
Optional start target (constant/variable/expression). If the
start target is entered as a dash, then the start target is
taken from the current value

end

Optional end target (constant/variable/expression). The end
target may be entered as a dash only for the case where the
termination option is MODAL (default) if the termination
option is NONE, then the end target must be specified

rate

Optional ramp rate (constant/variable/expression) If the rate
is not specified or is entered as a dash '-', then it is
computed from the start/end and mode time. The reate is
implied as [units]/sec

termination

Optional termination mode - defaults to AT_END

NONE - the ramping operation will continue until the end
target is reached even if the test mode expires

AT_END - the ramping operation is terminated when the mode
expires. The last value is frozen at the value reached by
ramping and is not stepped to the end target

Example Specification:
@RAMP
 #variable start end rate termination
 my_var x y z AT_END

Notes:

The start, end and rate values are determined only once, when the ramping operation is launched.

Page 66 of 89

Outputs @RAMP_DYNAMIC

Ramp a variable with dynamic evaluation of the end target and ramp rate.

Keyword:
@RAMP_DYNAMIC

Usage:

You may specify up to a total of 8 ramps in any mode. This limit applies to the total of all
@RAMP specs and all @RAMP_DYNAMIC specs.

There may only be a total of 16 ramping operations going on at the same time. This will include
the sum of all ramps generated with 'NONE' termination codes in previous test modes, plus all
ramps running in the current mode.

Data Fields:

variable Label of the target label

start
Optional start target (constant/variable/expression). If the
start target is entered as a dash, then the start target is
taken from the current value

end

Optional end target (constant/variable/expression). The end
target may be entered as a dash only for the case where the
termination option is MODAL (default) if the termination
option is NONE, then the end target must be specified

rate

Optional ramp rate (constant/variable/expression) If the rate
is not specified or is entered as a dash '-', then it is
computed from the start/end and mode time. The reate is
implied as [units]/sec

termination

Optional termination mode - defaults to AT_END

NONE - the ramping operation will continue until the end
target is reached even if the test mode expires

AT_END - the ramping operation is terminated when the mode
expires. The last value is frozen at the value reached by
ramping and is not stepped to the end target

Example Specification:
@RAMP_DYNAMIC
 #variable start end rate termination
 yore_var ex why zee

Notes:

This functions identically to the @RAMP capability, except that the end and rate are
dynamically re-evaluated every FAS intervals.

Page 67 of 89

Data Acquisition @RECORDER_GROUP

Initiate a recorder sampling process.

Keyword:
@RECORDER_GROUP

Usage:

This specification allows the user to initiate high speed data collection processes during a test
mode. The resources of the recorder collector task are used. An appropriate recorder
specification file must exist.

Data Fields:

start_type code for when to start data collection - options are
AT_START, AFTER_STABILITY

stop_path
code for what action to take when the data acquisition
is complete - options are NONE, MODE_TERMINATE,
RETURN, a mode number, or a procedure file pathname.

continue_flag flag for whether data collection should continue after
the mode terminates - (YES/NO)

spec_file_pathname the name of the recorder specification file

Example Specification:
@RECORDER_GROUP
 #start_type stop_path continue_flag spec_file_pathname
 AT_START NONE NO /specs/rspecs

Collect data according to the specifications in /specs/rspecs. Start the data collection at the start
of the mode. Terminate the data collection if it takes longer than the mode interval.

Page 68 of 89

Outputs @SET_DISPLAY_STATUS

Modify the display status of a variable.

Keyword:
@SET_DISPLAY_STATUS

Usage:

This specification allows a test procedure to modify the display status of a CyFlex variable. The
display status is an attribute of a variable which determines the color and blinking of a variable
when it is displayed on the monitor. The normal (default) status of a variable allows it to be
displayed without blinking in the background color specified in the dsply_specs.NNN file. This
can be modified to blink and change the background color or both. Up to 16 variables may be
specified per test mode.

Data Fields:

start_type a macro which defines when to modify the status - options are
AT_START, AT_END, AFTER_STABILITY

label the label of a CyFlex variable

code the new display status

Example Specification:
@SET_DISPLAY_STATUS
 #start_type label code
 AT_START counter BLINK
 AT_START counter2 RED
 AFTER_STABILITY stab_var BLINK_YELLOW

 Notes:

Valid status options are:

NO BLINK BLUE GREEN CYAN RED

MAGENTA YELLOW WHITE BLINK_BLUE BLINK_GREEN

BLINK_CYAN BLINK_RED BLINK_MAGENTA BLINK_YELLOW BLINK_WHITE

Page 69 of 89

Outputs @SET_EVENTS

Set an event at mode start.

Keyword:
@SET_EVENTS

Usage:

Each event listed will be set at the time indicated by the start_type field. The event length is zero.
The events must already exist.

Data Fields:

start_type code for when to set the event - options are AT_START, AT_END,
AFTER_STABILITY

event_name the name of an event to set

Example Specification:
@SET_EVENTS
 #start_type event_name
 AT_START get_it_going
 AT_END recdr_start

Set the event get_it_going at the start of the test mode and set the event recdr_start at the end of
the test mode.

Page 70 of 89

Creation @SPAWN_CO_PROCESS

Spawn a child process.

Keyword:
@SPAWN_CO_PROCESS

Usage:

Spawn a child process that is automatically slayed when the test procedure is terminated. This
keyword must be specified before the start mode.

Data Fields:

command Process to be spawned

arguments Arguments for the spawned process

Example Specification:
@SPAWN_CO_PROCESS
 /asset/bin/floger /specs/flogging +w
 /asset/bin/floger /specs/flogon

Page 71 of 89

Engine Control @SPEED

Specify the engine speed target.

Keyword:
@SPEED

Usage:
This specification selects the reference value for the engine speed variable. This may be the
setpoint for either the throttle or dyno loop, depending on the engine control mode, but is usually
the dyno setpoint. It is meaningful only if the controller is in closed loop mode. The end_target
and the ramp_rate are optional. If the end target specified is different from start target and the
ramp rate is not specified, then the ramp rate is computed from the start and end targets and the
mode timeout value.

Data Fields:
start_target the reference value at the start of the mode

end_target optional reference value at the end of the mode

ramp_rate optional rate at which to ramp from the start to end target
values

Example Specification:
@SPEED
 #start_target end_target
 ramp_rate
 Rated_rpm "Rated_rpm * 0.9[none]"

Ramp from rated speed to 90% of rated speed over the mode interval.

Notes:
The data fields may be constants, variable labels, or expressions. Constants must have units. The units of
ramp_rate are entered as units of speed. The denominator is assumed to be seconds. For example, 10[rpm]
would specify a ramp rate of 10 rpm/sec.

If the ramp rate is specified such that the end target is reached before the mode terminates, then the
ramping stops when the end target is reached.

If the ramp rate is specified such that the end target is not achieved when the mode terminates, the
ramping may continues unless the next mode modifies the speed target.

Other Examples:
@SPEED
 #start_target end_target ramp_rate
 1200[rpm]

Set the speed target to 1200 rpm.
 @SPEED
 #start_target end_target ramp_rate
 1000[rpm] 1000[rpm] 100[rpm]

Ramp from the speed reference of the previous mode to 1000 rpm at 100 rpm/sec.

Page 72 of 89

Stability @STABILITY_ACTION

List action to be taken when stabilization occurs.

Keyword:
@STABILITY_ACTION

Usage:
If the @STABILITY_SPECS keyword is used to specify stabilization criteria, then this keyword may be used to specify what
actions are required after the criteria are met. Possible actions are:

MODE_TERMINATE

TERMINATE_TO_ELSE_MODE

WAIT_FOR_STABILITY

Data Fields:
action_code a code which indicates certain special actions to perform

Example Specification:
@STABILITY_ACTION
 #action_code
 MODE_TERMINATE

Terminate the test mode when stabilization is complete.

Notes:
The actions associated with any keyword which uses the AFTER_STABILITY macro for a start_type is assumed to be one of the
actions taken when stability is complete.

The MODE_TERMINATE action means that when stabilization is complete, the test mode is immediately terminated. It may be
terminated prior to the completion of stability by other mechanisms, such as timeout, limits, etc.

The WAIT_FOR_STABILITY action means that no other mechanism for mode termination may precede the completion of
stability. If some other action occurs prior to completion of stability, the request to terminate is suspended until stabilization is
complete. The WAIT_FOR_STABILITY action code by itself does not specify that the mode be terminated, only that no other
action can cause termination prior to stability.

The code TERMINATE_TO_ELSE_MODE is used to force the execution of the mode specified with keyword @ELSE_MODE
when stability occurs.

The action codes may be used in combination to achieve the desired effect.

Other Examples:
@STABILITY_ACTION
 #action_code
 TERMINATE_TO_ELSE_MODE

Completion of stabilization will cause a branch to the mode specified by the @ELSE_MODE keyword.

@STABILITY_ACTION
 #action_code
 WAIT_FOR_STABILITY

This mode cannot be terminated until stabilization is complete. Completion of stability will, however, not necessarily cause the
termination of the mode.

Page 73 of 89

Stability @STABILITY_SPECS

List stability criteria.

Keyword:
@STABILITY_SPECS

Usage:

This keyword is used to specify a list of the stability criteria that are to be evaluated during the
test mode. Stability is complete when all of the specified criteria are achieved. See the chapter on
Stability for a more complete explanation of each type of stability criterion.

Data Fields:

type_code the type of criteria - options are TIME_DELAY, VARIANCE,
DEVIATION, CURRENT_DEVIATION, K_VARIANCE, STD_DEVIATION

variable the variable label to which the criteria is supplied
(except type = TIME_DELAY)

timeout the time window associated with the criteria (except
type = CURRENT_DEVIATION)

rate the rate at which the criteria is evaluated

reference the reference value for the criteria. This may be a
constant, variable, or expression.

tolerance the tolerance for the criteria.

minimum_reference for type=K_VARIANCE, the lower threshold for the
reference

Example Specification:
@STABILITY_SPECS
 #type_code variable timeout rate reference tolerance min_ref
 DEVIATION TORQUE 20[sec] SLO 1200[lb_ft] 10.0 -

The engine torque must be within 10 lb-ft of 1200 for 20 seconds to have stability.

 Notes:

The reference data field may be either a constant, variable label, or a computed expression.

Other Examples:
@STABILITY_SPECS
 #type_code variable timeout rate reference tolerance min_ref
 VARIANCE fuel_rate 10[sec] SLO - 1.0[lb/hr]
 TIME_DELAY - 20[sec]

If after at least 20 seconds the fuel_rate doesn’t wander by more than 1 lb/hr for 10 seconds,
stabilization is achieved.

Page 74 of 89

Branching @SWITCH

Specify an alternate execution path which depends on the value of an integer.

Keyword:
@SWITCH

Usage:

The value of an integer variable or expression is compared to a list of case/path pairs. If the
switch value matches one of the cases, then the corresponding path is executed. Otherwise, the
current mode is executed. Use the "RETURN" macro to return to a calling procedure.

Data Fields:

switch_value the label of an integer variable or a computed expression

case an integer value – if a match of the "switch value" is found
in this list, then the corresponding execution path is used

path a mode number, procedure filename, or RETURN

Example Specification:
@SWITCH
 #switch value
 count
 #case path
 1 91
 2 92
 3 /specs/gp/gp_test3
 4 RETURN

If the value of count is 1, then go to mode 91. If the value of count is 2, then go to mode 92. If
the value of count is 3, then jump to procedure gp_test3. If the value of count is 4, then return to
the calling procedure. If the value of count is any value other than 1, 2, 3, or 4, then execute the
current mode.

Notes:

The @SWITCH keyword is used to control the execution path of a test procedure when there are
several paths that can be taken, depending on the value of some variable. The variable might be
something like an error code read back from a Pierburg meter, or the value of a counter which is
keeping track of something.

Other Examples:
@SWITCH
 #switch value
 "error_code / 10[none]"
 #case path
 1 /specs/gp/gp_errA
 2 /specs/gp/gp_errB
 3 /specs/gp/gp_errC

Page 75 of 89

Mode Termination @TERM_ALL_EVENTS

Specify a list of events which must all be received to terminate the mode. This keyword would
be used instead of @TERMINATION_EVENTS if the conditional AND is appropriate.

Keyword:
@TERM_ALL_EVENTS

Usage:

Events can be used to force the test to terminate the present mode and advance to the next mode.
This specification is a list of event names which are to force the mode to terminate.

Data Fields:

event_name the name of the event

Example Specification:
@TERMINATION_EVENTS
 #event_name
 stop_this
 rec_done
 startup
 alldone

Page 76 of 89

Mode Termination @TERMINATION_EVENTS

Specify events which are to terminate the test mode.

Keyword:
@TERMINATION_EVENTS

Usage:

An event can be used to force the test to terminate the present mode and advance to the next
mode or to a specific test mode or to a different test procedure. This specification is a list of
event names which are to force the mode to terminate. If the next_path field is 0 or - or not
specified, then the next mode is executed.

Data Fields:

event_name the name of the event

next_path the next mode or test procedure to execute (optional)

Example Specification:
@TERMINATION_EVENTS
 #event_name next_path
 stop_this 0
 rec_done 3
 startup /specs/gp/gp_start
 alldone RETURN
 my_event /specs/gp/gp_event;25

If the stop_this event is received, terminate the mode and proceed to the next mode. If the
rec_done event is received terminate the mode and branch to mode 3. If the startup event is
received, jump to the gp_start procedure. If the alldone event is received, return to the calling
procedure. If the my_event is received, the gp_event procedure is started in mode 25.

Page 77 of 89

Branching @TEST_CYCLE_END

Designate this mode as the last mode of a test cycle.

Keyword:
@TEST_CYCLE_END

Usage:

This is used to count cycles in a test. It is used only when the cycle count must be maintained
over a long period of time and when the test must be terminated after the required number of
cycles is complete. When the cycle count reaches the maximum_cycles, then control is passed to
the test_complete_path. The test_complete_path may be a mode number in the current
procedure, a procedure filename, or the RETURN macro to return to a calling procedure.

Data Fields:

maximum_cycles the maximum number of test cycles

cycle_counter a variable assigned to counting of the cycles

test_complete_path the mode or procedure to execute when the test is
complete

Example Specification:
@TEST_CYCLE_END
 #maximum_cycles cycle_counter test_complete_path
 30000 test_cycles 91

Run the test until the test_cycles variable reaches 30000, then proceed to mode 91.

Notes:

The value of the cycle counter can be reset to zero or modified by the user with the svar
command.

 Other Examples:
@TEST_CYCLE_END
 #maximum_cycles cycle_counter test_complete_path
 100 cyc_cntr RETURN

@TEST_CYCLE_END
 #maximum_cycles cycle_counter test_complete_path
 1000 test_cycles2 /specs/gp/gp_shutdown

Page 78 of 89

Specify the throttle controller mode & open_loop position.

 Keyword:
@THROTTLE

Usage:

This specification selects the throttle controller mode to be either OPEN_LOOP or
CLOSED_LOOP. If the mode is CLOSED_LOOP, then only one data field is required and the
target values are ignored. If the mode is OPEN_LOOP, then the start_target must be specified.
The end_target is optional. If the start and end targets are both entered and are different, then the
controller output will be ramped linearly over the mode time_out interval. The targets are always
expressed as percent of full scale output.

Data Fields:

control_mode open/closed loop (OPEN_LOOP or CLOSED_LOOP)

start_target used only if mode is open_loop, units must be % of full scale

end_target used only if mode is open_loop and ramping is required, units
must be % of full scale

ramp_rate optional argument to specify the open_loop ramp rate

Example Specification:
@THROTTLE
#control_mode start_target end_target ramp_rate
OPEN_LOOP 100[%]

Set the throttle to full open position.

Notes:

The start and end targets may be constants, variable labels, or expressions. Expression must be
enclosed in double quotes. Units are required for all constants.

 Other Examples:
@THROTTLE
#control_mode start_target end_target ramp_rate
OPEN_LOOP min_thr "(max_thr - min_thr)/ 2.0[none]"

Ramp the throttle from the value in the min_thr variable to the value determined by the
computed expression.
@THROTTLE
#control_mode start_target end_target ramp_rate
CLOSED_LOOP

Set the throttle controller to closed loop. The throttle position will be determined by the PID

Engine Control @THROTTLE

Page 79 of 89

control.

Page 80 of 89

Engine Control @TORQUE

Specify the torque target.

Keyword:
@TORQUE

Usage:

This specification selects the reference value for the torque variable. This may be the setpoint for
either the throttle or dyno loop, depending on the engine control mode, but is usually the throttle
setpoint. It is meaningful only if the controller is in closed loop mode. The end_target and the
ramp_rate are optional. If the end target is specified is different from start target and the ramp
rate is not specified, then the ramp rate is computed from the start and end targets and the mode
timeout value.

Data Fields:

start_target the reference value at the start of the mode

end_target optional reference value at the end of the mode

ramp_rate optional rate at which to ramp from the start to end target
values

Example Specification:
@TORQUE
#start_target end_target ramp_rate
1000[lb_ft]

Set the torque reference to 1000 lb_ft.

Notes:

The data fields may be constants, variable labels, or expressions. Constants must have units. The
units of ramp_rate are entered as units of torque. The denominator is assumed to be seconds.

 Other Examples:
@TORQUE
#start_target end_target ramp_rate
Peak_torq

Use the variable Peak_torq for the torque control reference.
@TORQUE
 #start_target end_target ramp_rate
 " (Max_trq - Min_trq) * .5[none] "

Set the torque control reference to 50% of the difference between the Max_trq and Min_trq
variables.

Page 81 of 89

ECM Communications @UNICO_ACTIONS

Command used to communicate with an UNICO controller running on TCP/IP connection.

Keyword:
@UNICO_ACTIONS

Usage:

Data Fields:

start_code code for when to send the command - options are AT_START or
AFTER_STABILITY - default is AT_START

success_path
code for what action to take when communication is complete -
options are NONE, MODE_TERMINATE, RETURN, a mode number, or a
procedure file pathname - default is NONE

fail_path
code for what action to take if communication fails - options
are NONE, MODE_TERMINATE, RETURN, a mode number, or a
procedure file pathname - default is NONE

Example Specification:
@UNICO_ACTIONS
 #start_code success_path fail_path
 AT_START MODE_TERMINATE /specs/gp/quit

Page 82 of 89

ECM Communications @UNICO_GET

Command used to get a value for a specific variable from the ECM.

Keyword:
@UNICO_GET

Usage:

Data Fields:

controller_variable
The name of a UNICO interface control variable.
This may be a constant, variable or computed
expression which resolves to a valid CyFlex label

ASSET_label The label of the variable where the result will be
placed

Example Specification:
@UNICO_GET
 #controller_variable ASSSET_label
 "'injector' + cyl_number" fixed_label

Page 83 of 89

ECM Communications @UNICO_SET

Command used to set a value for a specific variable from the ECM.

Keyword:
@UNICO_SET

Usage:

Data Fields:

controller_variable
The name of a UNICO interface control variable.
This may be a constant, variable or computed
expression which resolves to a valid CyFlex label

value
This may be a constant, variable label, or computed
expression

Example Specification:
@UNICO_GET
 #controller_variable value
 'Some_label' 100[none]

Page 84 of 89

Control @USER_LOOP

Specify PID control loop mode and target.

Keyword:
@USER_LOOP

Usage:

This specification allows user PID loops to be set to open or closed loop and to have the
reference value modified. If the mode is OPEN_LOOP, then the targets must be expressed in
percent of full scale output. If the mode is CLOSED_LOOP, then the targets must be appropriate
units for the variable. The ramp_rate and end_target are optional. If the ramp_rate is not
specified, and the start and end targets are different, then the ramp rate is based on the mode
timeout value.

Data Fields:

control_mode open or closed loop mode, OPEN_LOOP/CLOSED_LOOP

variable reference variable

start_target the target at the start of the mode

end_target optional target at the end of the mode

ramp_rate optional rate at which to ramp the target

Example Specification:
@USER_LOOP
#control_mode variable start_target end_target ramp_rate
CLOSED_LOOP port_in_p 15[in_hg]
CLOSED_LOOP fuel_temp 100[deg_F] 110[deg_F]
OPEN_LOOP air_inlet_t 100[%]

Set the reference for point_in_p to 15 in_hg. Ramp the reference for fuel_temp from 100 to 110F
over the mode interval, and set the controller for air_inlet_t to full open.

 Notes:

The target may be expressed as a constant, variable label, or computed expression.

Other Examples:
@USER_LOOP
#control_mode variable start_target end_target ramp_rate
CLOSED_LOOP aa_temp compute_aa

Set the control reference for the loop controlling aa_temp to be the value of the variable,
compute_aa. This might be used for a situation where the desired intake manifold temperature is
a function of speed and load and is being continuously computed and placed in the variable
compute_aa.

Page 85 of 89

Outputs @VZ_CONFIG

Virtual zero/span for emissions carts.

Keyword:
@VZ_CONFIG

Usage:

Data Fields:

device NOX, CO2, HC, CO2_RAW

action_code VZ, VS, HZ, HS, RANGE

value Constant, label or computed expression

Example Specification:
@VZ_CONFIG
#device action_code value
NOX VZ 0[none]
CO2 VS 6[ppm]

Page 86 of 89

Data Acquisition @WRITE_VALUES

Write formatted data to a file.

Keyword:
@WRITE_VALUES

Usage:

This keyword allows the user to write ASCII data into a file and control the data, format, and rate
through the test procedure specification. In effect, a flexible data logging operation can be
created with the test scheduler. Up to 32 specifications can be included with this keyword.

Data Fields:

start_type
code for when to write the data. Options are AT_START,
AT_END, AFTER_STABILITY

file_name the file where the data will be written

variable a CyFlex variable which will be written according to the
format string

format_string a C format string used for formatting the write.

Example Specification:
@WRITE_VALUES
#start_type file_name variable format_string
AT_START /data/tq_sp - RPM
AT_START /data/tq_sp RPM %11.2f

Write a header line and the current value of engine speed into the file /data/tq_sp each time this
mode is executed.

Notes:

Each write operation is appended to the end of the file.

Page 87 of 89

Support Tasks @AKSYNC

Send command to asynchronous device using AK protocol with synchronized communications.

Keyword:
@AKSYNC

Usage:
Send a command to a device connected to a serial port. The command string will be parsed and
converted to a string which the device can interpret based on a configuration file. The XXXX
configuration file must be in /specs directory and must be named device.cfg, where device is the
same as that used in the @ASC specification. For this example, the file would be
/specs/pager.cfg.XXXXX

Data Fields:
Instrument Name of instrument the AK_sync task has attached to.

Command Instrument specific command, format defined in instrument
speicification file. (ie. AVL483.spec)

Example Specification:
@AKSYNC

#instrument name

AVL483

#command key strings

get a reading

"ADIL SS_dil_typ SS_dil - - -"

"ASTF SS_error1 SS_error2 SS_error3 SS_error4 SS_error5 SS_error6"

"AKON avl_483_soot avl_483_corr"

Other Examples:

@AKSYNC

#instrument name

AVL483

#command key strings

set dilution parameters

"EDIL SS_dil_typ_TR SS_dil_TR 1.00 10.00 1.00"

Page 88 of 89

AKSYNC Communications @AKSYNC_ACTIONS

Specify when to send an AKSYNC command. failure.

Keyword:
@AKSYNC_ACTIONS

Usage:

This keyword is used to specify the actions and timing associated with all AKSYNC
communications for a test mode. The start_type specifies when the commands will be
executed, the stop_path specifies what action will be taken when all commands have been
completed, and the fail_path specifies what to do if the communication fails to complete
successfully.

Data Fields:

start_type code for when to send the message - options are
AT_START, AFTER_STABILITY, AT_END

stop_path
code for what action to take when the communication is
complete - options are NONE, MODE_TERMINATE, RETURN, a
mode number, or a procedure file pathname.

fail_path

code for what action to take if there is a failure to
communicate with the ECM - options include NONE,
MODE_TERMINATE, RETURN, a mode number, or a procedure
file pathname.

Example Specification:
@AKSYNC_ACTIONS
 #start_type stop_path fail_path
 AT_START MODE_TERMINATE /specs/gp/comm_fail

Start sending the AKSYNC commands at the start of the mode, terminate the mode when all are
complete, and if there is a failure, go to the test mode specified by the @ELSE_MODE keyword.

Notes:

This keyword is used only when there are other AKSYNC communication commands such as
@AKSYNC.

Page 89 of 89

AKSYNC Communications @AKSYNC_RESTART

Cause the AKSYNC collector task to be terminated ans restarted.

Keyword:
@AKSYNC_RESTART

Usage:

@AKSYNC_RESTART

@AKSYNC

#instrument

 AVL483

Notes:

This keyword is used only when there are other AKSYNC communication to specify the specific
instance of AK_sync task.

