

CyFlex® Variables, Units, and Computed
Expressions

Version 16
March 21, 2024

Developed by Transportation Laboratories

CyFlex® Variables, Units, and Computed
Expressions

Version 16 i
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Version History
Version Date Revision Description

1 1/19/2016 Initial publication

2 7/25/2017 Format changes

3 7/19/2018 Added xml_secs function to Table 5

4 3/12/2019 Added polyRoot function to Table 5

5 6/27/2019 Changed long to int for numerous functions

6 7/3/2019 Added month_of_year function to Table 5

7 3/25/2020 Reformat to new template

8 10/20/2020 • Updated Section 7.7 Bitwise Operators on page 8 to add
the ^ symbol for EXCLUSIVE OR.

• Updated Section 7.9 Expressions without Units
Conversion on page 9 to modify the conversion equation
example.

9 5/24/2021 Revised and corrected content of Table 5 on page 10:
• Append “as a string with leading zeroes” to description of

int day_of_month()on page 11
• Correct omt day_of_week()to int

day_of_week()and append “as a string with leading
zeroes” to its description on page 11

• Append “as a string with leading zeroes” to description of
int day_of_year()on page 12

10 8/4/2021 Added hypertext cross-references to usage help in Section 7
Computed Expressions on page 7

11 5/12/2022 Updated all hypertext cross-references to cyflex.com usage
help descriptions

12 9/6/2022 Added note in Section 7.9 Expressions without Units
Conversion on page 9 to clarify allowed use of {} braces in an
expression.
Added the following function descriptions to Table 5 on page
10:
• @hex_2
• @dec_2_hex
• @parse_line

13 9/21/2022 Added function description for @vp_to_dpt to Table 5 on
page 10.

CyFlex® Variables, Units, and Computed
Expressions

Version 16 ii
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Version Date Revision Description
14 11/9/2022 In Table 5 on page 10:

• Revised @dpt_to_vp function and description
• Revised @vp_to_dpt description
• Revised function double rh_visc_rat(double

temp, double rh) to double rh_to_vp(rh,
dry_bulb_temp)for @rh_to_vap and revised
description

15 1/29/2024 Rebrand to TRP Laboratories

16 3/21/2024 Added magic_num to the expression in Section 7.9
Expressions without Units Conversion on page 9

CyFlex® Variables, Units, and Computed
Expressions

Version 16 iii
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Document Conventions
This document uses the following typographic and syntax conventions.

• Commands, command options, file names or any user-entered input appear in Courier
type. Variables appear in Courier italic type.
Example: Select the cmdapp-relVersion-buildVersion.zip file….

• User interface elements, such as field names, button names, menus, menu commands,
and items in clickable dropdown lists, appear in Arial bold type.
Example: Type: Click Select Type to display drop-down menu options.

• Cross-references are designated in Arial italics.
Example: Refer to Figure 1…

• Click intra-document cross-references and page references to display the stated
destination.
Example: Refer to Section.1 Overview on page 1

The clickable cross-references in the preceding example are 1, Overview, and
on page 1.

CyFlex Documentation
CyFlex manuals are available at https://cyflex.com/. View Help & Docs topics or use the
Search facility to find topics of interest.

https://cyflex.com/

CyFlex® Variables, Units, and Computed
Expressions

Version 16 iv
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Table of Contents
1 OVERVIEW .. 1

2 REAL VARIABLES ... 2

3 INTEGER VARIABLES ... 3
4 LOGICAL VARIABLES ... 4

5 STRING VARIABLES.. 5

6 UNITS .. 6

7 COMPUTED EXPRESSIONS ... 7

7.1 VARIABLES ... 7

7.2 CONSTANTS .. 7
7.3 ARITHMETIC OPERATORS .. 7

7.4 LOGICAL EXPRESSIONS ... 8

7.5 LOGICAL OPERATORS ... 8

7.6 COMPARISON OPERATORS .. 8

7.7 BITWISE OPERATORS .. 8
7.8 EXAMPLES OF EXPRESSIONS ... 9

7.9 EXPRESSIONS WITHOUT UNITS CONVERSION.. 9

7.10 FUNCTIONS ... 10

CyFlex® Variables, Units, and Computed
Expressions

Version 16 v
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

LIST OF TABLES
TABLE 1: REAL VARIABLE CHARACTERISTICS .. 2

TABLE 2: INTEGER VARIABLE CHARACTERISTICS ... 3

TABLE 3: LOGICAL VARIABLE CHARACTERISTICS ... 4
TABLE 4: STRING VARIABLE CHARACTERISTICS ... 5

TABLE 5: FUNCTIONS SUPPORTED IN EXPRESSIONS .. 10

CyFlex® Variables, Units, and Computed
Expressions

Version 16 1
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

1 Overview

A variable is the basic unit of information in CyFlex and is a reference to a piece of information
in CyFlex that is often changing in value. It is the values of variables which are acquired,
displayed, stored, used in safety limits, used in closed loop controls, calculated, etc.
There are twelve types of variables. These are:
REAL REAL_ARRAY INTEGER
INTEGER_ARRAY LOGICAL LOGICAL_ARRAY
STRING STRING_ARRAY STATISTICAL
fluid COMPOSITION fluid PROPERTY EMISSION

This document discusses only the four most common types which users deal with: REAL,
INTEGER, LOGICAL, and STRING. Note that the term REAL is synonymous with “double
precision floating point”.
The values associated with variables are set using various methods according to the use of the
variable in the system.

• System inputs are automatically updated by input transfer layers.
• System outputs are typically set by the Controls task, the Test Manager, or the user.

Performance variables are automatically updated by applications which compute the
values based on current inputs.

• The statistical, composition, and property types are only modified by special processes
which are designed for that purpose.

Refer to Section 7 Computed Expressions on page 7 for information on the mechanism to
specify the value of a variable as a function of other variables in the system.

CyFlex® Variables, Units, and Computed
Expressions

Version 16 2
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

2 Real Variables

Real variables are variables that contain a single floating-point value. These variables are
associated with the following functions:

• Performance and input variables
• Control variables
• User created variables

Table 1: Real Variable Characteristics

Name Description
Display Format Specify the number of characters after the decimal points to display

using the format field available in specifications for real variables.
The format does not affect the value, only how the value is
displayed.

Label A unique alphanumeric string of up to 79 characters representing
how a variable is to be displayed. Two variables within a CyFlex
system cannot have the same label. They may contain any alpha
character (a-z and A-Z), numerals and underscores, but must not
begin with a numeral. Characters not allowed in any part of the
label are + - / * & @ , . ! [] ? “ | () < > ;

Save Active A flag indicating whether to save the real variable using the history
system. Refer to Compressed History Data and History Plot User
Guide.

Save Tolerance The maximum deviation between the original information and
information reconstructed from the history file. The tolerance should
be set low enough to ensure adequate resolution of the stored
variable, but not so low that the history system is overloaded.
Tolerances are specified in the units specified by "Units” and must
be greater than 0.

Units A string, from a constrained list, representing the physical units of
measure which are associated with a variable’s value. The user
may specify the units associated with a real variable in
specifications using the "units" field

Transition Event The name of event which is set when the value of the variable
changes by a value greater than the “save tolerance” (mentioned
above)

Value The information associated with a variable that represents its
current condition or state. A real variable’s value is a double
precision floating point number.

https://cyflex.com/wp-content/uploads/History-Data-Compression.pdf
https://cyflex.com/wp-content/uploads/HistoryPlot-Program.pdf
https://cyflex.com/wp-content/uploads/HistoryPlot-Program.pdf

CyFlex® Variables, Units, and Computed
Expressions

Version 16 3
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

3 Integer Variables

Integer variables contain a single integer value. These variables are associated with the
following CyFlex functions:

• Counter input channels
• Performance variables
• General usage variables

Table 2: Integer Variable Characteristics

Name Description
Label A unique alphanumeric string of up to 79 characters representing

how a variable is to be displayed. Two variables within a CyFlex
system cannot have the same label. They may contain any alpha
character (a-z and A-Z), numerals, and underscores, but must not
begin with a numeral. Characters not allowed in any part of the
label are + - / * & @ , . ! [] ? “ | () < > ;

Save Active A flag indicating whether to save the variable using the history
system. The Save Active flag may be either ON, indicating a
variable should be saved, or OFF, indicating it should not be saved.

Save Tolerance A value indicating how much of a change in the value of a variable
must occur before a value is saved. The tolerance should be set
low enough to ensure adequate resolution of the stored variable is
achieved, but not so low that the history system is overloaded.
Tolerances are specified in the units specified by Units and must
be greater than 0.

Transition Event The name of event which is set when the value of the variable
changes.

Units A string representing the physical units of measure which are
associated with a variable’s value. The user may specify the units
associated with an integer variable in specifications using the
Units field.

Value The information associated with a variable which represents its
current condition or state. An integer variable’s value is a long
integer number (values up to 2147483648 plus or minus).

CyFlex® Variables, Units, and Computed
Expressions

Version 16 4
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

4 Logical Variables

Logical variables are variables that contain a single logical value (ON/OFF). These variables are
associated with the following CyFlex functions:

• Digital input channels
• Digital output channels
• User defined variables
• Limit state variables
• Limit latch variables

Table 3: Logical Variable Characteristics

Name Description
Label A unique alphanumeric string of up to 79 characters representing

how a variable is to be displayed. Two variables within a CyFlex
system cannot have the same label. They may contain any alpha
character (a-z and A-Z), numerals, and underscores, but must not
begin with a numeral. Characters not allowed in any part of the
label are + - / * & @ , . ! [] ? “ | () < > ;

Off Transition Event A CyFlex event which is set when the value of the variable changes
from the ON state to the OFF state.

On Transition Event A CyFlex event which is set when the value of the variable changes
from the OFF state to the ON state.

Save Active A flag indicating whether to save the real variable using the CyFlex
history system. The Save Active flag may be either ON, indicating a
variable should be saved, or OFF, indicating it should not be saved.

Value The information associated with a variable which represents its
current condition or state. A logical variable’s value is one of two
states. The states may be referred to with specific names (e.g.,
VALVE_OPEN, VALVE_CLOSED) or by the state names ON and
OFF.

Label A unique alphanumeric string of up to 79 characters representing
how a variable is to be displayed. Two variables within a CyFlex
system cannot have the same label. They may contain any alpha
character (a-z and A-Z), numerals, and underscores, but must not
begin with a numeral. Characters not allowed in any part of the
label are + - / * & @ , . ! [] ? “ | () < > ;

CyFlex® Variables, Units, and Computed
Expressions

Version 16 5
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

5 String Variables

String variables are variables that contain a sequence of displayable characters. These
variables are associated with the following CyFlex functions:

• Performance
• Display
• User defined variables

Table 4: String Variable Characteristics

Name Description
Label A unique alphanumeric string of up to 79 characters representing

how a variable is to be displayed. Two variables within a CyFlex
system cannot have the same label. They may contain any alpha
character (a-z and A-Z), numerals, and underscores, but must not
begin with a numeral. Characters not allowed in any part of the
label are + - / * & @ , . ! [] ? “ | () < > ;

Transition Event The name of event which is set when the value of the variable
changes.

Type The type indicates whether the string is to be displayed in a 15-
character field or an 80-character field on the monitor display.
When the variable is created, if it is defined with single quotes it is
to be a SHORT_STRING (15 characters). If it is defined with double
quotes, it is a LONG_STRING (up to 80 characters).

Value The information associated with a variable that represents its
current condition or state. The value may be a string of up to 80
characters. If the string is 15 characters or less, this can be
classified as a "short string" and can be displayed on the monitor as
if it were a normal variable. If it is more the 15 characters long, an
entire line on the display screen may be required for the display.

CyFlex® Variables, Units, and Computed
Expressions

Version 16 6
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

6 Units

CyFlex is “units aware”. CyFlex uses a system of units conversion for internal calculations that
relies on a pre-defined table of units conversion factors. The units that are available in this pre-
defined table can be browsed by typing the command “units”. The output will arrange the
available units descriptions by dimension For each dimension such as pressure, temperature,
length, mass, etc. there is a specified “base” unit which is in SI (metric) units. A conversion
factor is specified for all other units in that dimension for converting to the “base” SI units. The
internal calculation method uses the following steps when evaluating an expression

• Fetch the value and units of each variable in the expression
• Convert the value to the “base” SI units of the dimension
• Perform the arithmetic operations specified in the expression
• The result of the arithmetic operations will be in “base” SI units
• If the result of the computations is to be stored into an output variable, fetch the units of

that output variable
• Convert the result from the “base” SI units to the units of the output variable
• Store the converted value in the output variable

A simple example can illustrate calculation of the power of a rotating shaft for which the speed
and torque are being measured. The speed variable has units of [rpm] and the torque has units
of [lb_ft]. The power has units of [bhp]. The calculation is simply:

 speed * torque
The method uses the following steps:

• Convert speed from [rpm] to [radians/sec] -- [radians/sec] is the base SI units
• Convert torque from [lb-ft] to [Newton-meters] -- [Newton-meters] is base SI units
• Multiply the value of speed by the value of torque in base SI units and the result will be

in base SI units of power, [watts]
• Convert the power value in [watts] to [bhp]
• Store the result in the desired power variable
Note:

There are no constants such as 5252 in the expression because this method is “units-
consistent” as a result of the conversion to base SI units.

CyFlex® Variables, Units, and Computed
Expressions

Version 16 7
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

7 Computed Expressions
Users may create variables of the types mentioned above and assign a computed expression
for that variable. The variable value is then dynamically computed by CyFlex based on the
expression that the user supplies which arithmetically combines other variable values. Use the
following CyFlex applications to perform user computations (not a complete list).

• compvar for user computations; refer to compvar usage help on cyflex.com.
• gp_test, the Test Manager; refer to gp_test usage help on cyflex.com.
• evnt_rsp for event response; refer to evnt_rsp usage help on cyflex.com.
• limit to examine limits specifications; refer to limit usage help on cyflex.com.
• floger to use the Data Logger; refer to floger usage help on cyflex.com.
• get_comp to obtain a computed expression value; refer to get_comp usage help on

cyflex.com.
The mechanism which allows the user to define a computed variable’s value as a function of
other variables is called an expression. An expression is a string the user specifies which is
equated to the computed variable’s value.
Example expressions:
“counter + 1[none]”
“torque * speed”

7.1 Variables
Variables are referred to in expressions using the variable’s label. The units associated with a
variable are automatically managed in the evaluation of the expression, i.e., units conversions
are not required in expressions.

7.2 Constants
A constant in an expression is a combination of a value and a units specification. Note that
CyFlex requires that units be specified for ALL constants used in an expression. Forgetting to
include units is one of the most common errors in writing expressions. The units are associated
with the value using square brackets ([...]) as follows:
100[deg_f]
1200[rpm]

7.3 Arithmetic Operators
The following arithmetic operators are supported in expressions:

+ addition
- subtraction
/ division
* multiplication
Notes:

The + operator, when applied to strings denotes concatenation. The other 3 arithmetic
operators cannot be used with strings.

Example – squaring a value found in variable “xyz”
 @pow(xyz, 2[none])

https://cyflex.com/index.php/usage-help-manual/2-variables-and-computations/compvar/
https://cyflex.com/index.php/usage-help-manual/12-test-manager/gp_test
https://cyflex.com/index.php/usage-help-manual/10-standard-services/evnt_rsp/
https://cyflex.com/index.php/usage-help-manual/6-limits-monitoring/limit
https://cyflex.com/index.php/usage-help-manual/9-data-collection-data-logging/floger/
https://cyflex.com/index.php/usage-help-manual/19-fluid-flow-computations/get_comp/

CyFlex® Variables, Units, and Computed
Expressions

Version 16 8
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

7.4 Logical Expressions
if (logical_variable_or_expression) then (value) else (value)

Complex if/then/else logical constructs may be used where the
value above may itself be an if/then/else expression.

if a then (if(x) then (y) else (z)) else b

If the target variable of an expression is a logical variable,
the if/then/else terms are unnecessary for the case where the
result is either TRUE or FALSE.

if (a > b) then TRUE else FALSE

can be replaced by the expression alone

a > b

since the result of evaluating (a > b) will be either TRUE or
FALSE.

7.5 Logical Operators
Logical operators may be used to combine logical values or expressions. Supported logical
operators are:

&& AND
|| OR
! NOT

7.6 Comparison Operators
> greater than
< less than
>= greater than or equal to
== equal to
<= less than or equal to

7.7 Bitwise Operators
| bitwise OR
& bitwise AND
>> right shift
<< left shift
^ EXCLUSIVE OR

CyFlex® Variables, Units, and Computed
Expressions

Version 16 9
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

7.8 Examples of Expressions

A calculation of a speed 100 RPM over the engine’s idle speed:
“IdleSpd + 100[rpm]”

A calculation of a control loop target temperature as a function of whether an engine is running:
“if(Engine_Run) then (100[deg_f]) else (130[deg_f])”

The following is an example of a computed string, where the +
(plus) symbol is used to represent string concatenation.

“ ‘test_device_serial_number=’ + serial_number “

In the example above, serial_number is a string variable and
might contain a string such as “100321”. The sinqle-quoted
string ‘test_device_serial_number’ is a literal string, so the
result would be:

test_device_serial_number=100321

7.9 Expressions without Units Conversion
Calculations within an expression can be forced to occur without units conversion or to be done
with specified units by enclosing the expression in { } braces. In this form, the constants are
entered without units and adding units to a variable label is optional. This can be particularly
useful when a computation is needed and the computed expression implies units that are not in
the list of supported units for PAM. For example, a manufacturer of an instrument may provide a
conversion equation such as:
 “x = magic_num * a * b / @pow(c , 3)”

Where x has units of ft3/min, a is in rpm, b is in psi and c is the diameter in mm2. The
expression can be enclosed in the curly braces {} to perform the computation the same as a
calculator would.

 { magic_num *(a * b) / (c * c * c) }

Note:

The {} braces can only be used to contain the complete expression and cannot be used
for sections within the expression.

The result of the above expression will have the value expressed in kg/min.
A simpler example: Assume that IdleSpd has units of RPM and a value of 1000[rpm]:

 “ IdleSpd + 100[rpm] ” will yield the equivalent of 1100[rpm] in default units of
[rad/sec]

 { IdleSpd + 100 } will yield a value of 1100

CyFlex® Variables, Units, and Computed
Expressions

Version 16 10
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

As another example, using temperatures, assume my_temp has a value of 68[deg_f] and
units of deg_f:

 my_temp will have a result of 293 in base SI units of Kelvin

 {my_temp} will result in 68 (deg_f)

7.10 Functions

Functions may be called in expressions using an "at" sign (@) followed by the name of the
function, for example:

@sin(crank_angle)
Table 5: Functions Supported in Expressions

Function Description
abs(X) integer absolute value of X

ceil(X) smallest integer not less than X. Short for
ceiling

fabs(X) floating point absolute value of X
floor(X) largest integer not greater than X
fmod(dividend, divisor) remainder of dividend divided by divisor
labs(X) long absolute value of X
round(X) rounds to nearest integer

exp(X) Napier’s number e (2.71828...) raised to the
X power

log(X) natural log of X
log10(X) common log of X
log2(X) log, base 2, of X
pow(base,exp) base raised to the exp power
sqrt(x) square root of X
acos(X) arc cosine of X (-1<=X<=1)
acosh(X) inverse hyberbolic cosine of X (X>1)
asin(X) arc sine of X (-1<=X<=1)
asinh(X) inverse hyperbolic sine of X

atan(X) arc tangent of X (- /2 < X <  /2) (2
quadrants)

atanh(X) inverse hyperbolic arctangent of X
atan2(sin, cos) arc tangent of sin/cos (4 quadrants)
cos(X) cosine of X

CyFlex® Variables, Units, and Computed
Expressions

Version 16 11
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Function Description
cosh(X) hyperbolic cosine of X
sin(X) sine of X
sinh(X) hyperbolic sine of X
tan(X) tangent of X
tanh(X) hyperbolic tangent of X
j0(X) Bessel function first kind, zeroth order
j1(X) Bessel function first kind, first order
y0(X) Bessel function second kind, zeroth order
y1(X) Bessel function second kind, first order

long_3d_comp(X_VAR, TABLE_NUM)

3D long interpolation
Example:
@long_3d_comp(1000[rpm], 5[none]
)

this would use table file
/cell/tables/loc_two_d_5.tbl

long_3d_comp_name(double value,
char *table_name)

3d long interpolation test, using the table
name
Example:
@long_3d_comp_name(1000[rpm],
‘loc_two_d_5’)

this would use table file
/cell/tables/loc_two_d_5.tbl

shrt_3d_comp(X_VAR, TABLE_NUM) 3D short interpolation

int second_of_minuteL() returns current "seconds" of time as an
integer

char* second_of_minute () returns current "seconds" of time as a string
with leading zeroes

int minute_of_hourL() returns current "minutes" of time as an
integer

char* minute_of_hour() returns current "minutes" of time as a string
with leading zeroes

int day_of_month() returns current "day" of month as a string
with leading zeroes

int day_of_week() returns current "day" of week as a string with
leading zeroes

CyFlex® Variables, Units, and Computed
Expressions

Version 16 12
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Function Description

int day_of_year() returns current "day" of year as a string with
leading zeroes

int hour_of_dayL() returns current "hour" of day (24-hour clock)
as an integer

char* hour_of_day() returns current "hour" of day (24-hour clock)
as a string with leading zeroes

int year_month_dayL() returns an integer of format YYMMDD, e.g.
110621

int day_month_yearL() returns an integer of format DDMMYY, e.g.
210611

char* year_month_day() returns string of format YYMMDD, e.g.
“110621”

char* day_month_year() returns string of format DDMMYY with
leading zeroes, e.g. “210611”

int year4_month_dayL() returns an integer of format YYYYMMDD,
e.g. 20110621

char* year4_month_day() returns string of format YYYYMMDD with
leading zeroes, e.g. “20110621”

char* week_of_year()
returns string of format NN, where NN is the
current week of the year numbered from 1 to
52, e.g. “47”

int week_of_yearL()
returns an integer of format NN, where NN is
the current week of the year numbered from
1 to 52, e.g. 9

char* month_of_year() Returns a 2-character string representing the
month (01 to 12)

int month_of_yearL() Returns an integer value from 1 to 12
representing the month

CyFlex® Variables, Units, and Computed
Expressions

Version 16 13
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Function Description

double rh_to_vp(rh,
dry_bulb_temp)

Given the relative humidity and dry bulb
temperature, calculate the vapor pressure
per the combination of equations
40CFR1065.645(a), (b) and (c).
WARNING: The proper units for relative
humidity are pct, not %.
Examples:
@rh_to_vap(vaisala_rh, vaisala_t
)

@rh_to_vp(50[pct], 59.4[deg_f])
returns 0.255970[in_hg]

double kvisc(long code , double
t)

compute the kinematic viscosity (stokes)of
lube or fuel oil at a given temperature (t)
code and type:
1. #1 fuel oil
2. #2 fuel oil
3. 15W40 lube oil
4. 10W lube oil
5. 30W lube oil

double dpt_to_vp(dew_point)

given the dewpoint temperature, calculate
the vapor pressure per
40CFR1065.645(a)(1) or (2) depending on
the temperature range.
Example:
@dpt_to_vp(outside_temp)
@dpt_to_vp(68[deg_f]) returns 2336
pascals

double vp_to_dpt(vap_pa)

Given the vapor pressure, calculate the
dewpoint temperature per
40CFR1065.645(d)
Examples:
@vp_to_dpt(vap_pa)

@vp_to_dpt(0.5931[in_hg]) returns
63.53145[deg_f]

double cal_table(x-value,
table_name)

returns interpolated value from a calibration
table
Examples:
@cal_table(100[mv], ‘cmp_in_p’)
@cal_table(x_val, ‘cmp_in_p’)

CyFlex® Variables, Units, and Computed
Expressions

Version 16 14
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Function Description

char ascii_time(time)

returns MM/DD/YY HH:MM:SS format from a
double value of ANSI time – time may be a
constant with units, the label of a variable
with units of time, or a computed expression
Examples:
@ascii_time(1150897824.87[sec])
@ascii_time(time)
@ascii_time(“time – 1[hr]”)

char ascii_time4(time)

returns MM/DD/YYYY HH:MM:SS format
from a double value of ANSI time – time may
be a constant with units, the label of a
variable with units of time, or a computed
expression
Examples:
@ascii_time4(1150897824.87[sec]
)
@ascii_time4(time)
@ascii_time4(“time – 1[hr]”)

char xml_time(time)

returns CCYY-MM-DDTHH:MM:SS format
from a double value of ANSI time – time may
be a constant with units, the label of a
variable with units of time, or a computed
expression
Examples:
@xml_time(1150897824.87[sec])
@xml_time(time)
@xlm_time(“time – 1[hr]”)

unsigned int strlen(char *string
)

Find the length of a string
Examples:
var1 = “abcde”
@strlen(var1)

The above returns 5
Or
@strlen(‘abcde’)

The above returns 5

CyFlex® Variables, Units, and Computed
Expressions

Version 16 15
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Function Description

int strcmp(char *s1, char *s2)

Compare two strings – functions the same
as the standard C-library call
Example:
Var1 = “abc”
Var2 = “def”
@strcmp(Var1, Var2)

The above returns -1
Var1 = “ghi”
Var2 = “ghi”
@strcmp(Var1, Var2)

The above returns 0 because they match
Var1 = “jkl”
Var2 = “abc”
@strcmp(Var1, Var2)

The above returns 1

strcpy(char *s1, char *s2)

string copy
Examples:
Var1 = “111”
Var2 = “789”
@strcpy(Var1, Var2)

The above results: Var1 = “789”
Var1 = “abc”
@strcpy(Var1, ‘8888’)

The above results: Var1 = “8888”

char *strstr(char *s1, char *s2
)

Find the start of one string in another string
Examples:
Var1 = “0”
Var2 = “456”
@strstr(Var1, Var2)

The above results: = “”
Var1 = “789”
Var2 = “8”
@strstr(Var1, Var2)

The above results: = “89”

CyFlex® Variables, Units, and Computed
Expressions

Version 16 16
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Function Description

strncmp(char *s1, char *s2, int
n)

string compare – number of characters
Examples:
Var1 = “ABCDEFGH”
Var2 = “ABCDEFHI”
@strncmp(Var1, Var2, 4[none])

The above returns: 0
@strncmp(Var1, Var2, 8[none])

The above returns: -1
@strncmp(Var1, ‘ab’, 2[none])

The above returns: 0

strncpy(char *s1, char *s2, int
n)

Copy n characters from one string to another
Examples:
Var1 = “55555555”
Var2 = “789”
@strncpy(Var1, Var2, 3[none])

The above results: Var1 = “7895555”
Var1 = “TRUE”
@strncpy(Var1, ‘FALSE’, 2[none]
)

The above results: Var1 = “FAUE”

char* strupr(char *s1)

convert a string to upper case
Example:
Var1 = “abcdefgh”
@strupr(Var1)

The above results: Var1 = “ABCDEFGH”

LOGICAL strcmp_lbl_lbl(char
*label1, char *label2)

compare the values of 2 string variables
Example:
@strcmp_lbl_lbl(my_s1, my_s2)
returns TRUE if the contents of string
variable s1 is the same as the contents of
string variable s2

LOGICAL strcmp_lbl_lit(char
*label, char *s1)

compare the value of a string variable with a
string literal
Example:
@strcmp_lbl_lit(my_s, ‘ctl_spd’
) returns TRUE if my_s contains
“ctl_spd”

CyFlex® Variables, Units, and Computed
Expressions

Version 16 17
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Function Description

double str_lbl_value(char *label
)

get the value of a variable whose label is
contained in a string variable
Example:
@str_lbl_value(my_s) where my_s
contains the label ‘ctl_spd’, returns 1000.5
See str_lbl_def_value() below to return the
value in default units.

double str_lbl_def_value(char
*label)

return default (SI units) value of a variable
whose label is contained in a string variable
Example:
@str_lbl_def_value(my_s) where
my_s contains the label of a variable

char *str_var_string(char
*label, int format)

get the value of a variable whose label is
contained in a string variable - return the
value as string with "format" places to the
right of decimal. NOTE: for this function, the
label must be contained in single quotes as
shown below.
Example:
@str_var_string(‘my_s’,
2[none]) where my_s contains the label
‘ctl_spd’, returns “1000.49”
#type label -> value contained
string my_s -> ‘ctl_spd’ (label of target
variable)
real ‘ctl_spd’ -> 1000.49 (this can be any
type)

short str_lbl_in_str_lbl_out(
char *lable1, char *label2)

where label1 and label2 are string variables
which contain the labels i_lbl_1 and i_lbl_2,
move the value of i_lbl_1 to i_lbl_2 using
appropriate units conversion – return TRUE
if successful
Example:
@str_lbl_in_str_lbl_out(
my_pres1, my_pres2)

int strstrx(char *s1, char *s2)

search s1 for the substring s2 and return the
position in s1 where s2 starts
Example:
@strstrx(‘a valuable lesson’,
‘val’) returns a 2

CyFlex® Variables, Units, and Computed
Expressions

Version 16 18
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Function Description

int strstrci(char *s1, char *s2
)

search s1 for the substring s2 and return the
position in s1 where s2 starts. Do the search
in a case-insensitive manner
Example:
@strstrx(‘a VALUABLE lesson’,
‘val’) returns a 2

double cal_table_min(char *file
)

return the minimum engineering units of a
calibration table file
Example:
@cal_table_min(‘air_mtr0_p’)
returns the minimum value of file
/cell/tables/air_mtr0_p.tbl

double cal_table_max(char *file
)

return the maximum engineering units of a
calibration table file
Example:
@cal_table_max(‘air_mtr0_p’)
returns the maximum value of file
/cell/tables/air_mtr0_p.tbl

double variable_age(char *label
)

return the time (in seconds) since a variable
was updated
Example:
@variable_age(ctl_spd) returns
1.00 if ctl_spd variable was update 1 sec ago

double variable_time(char *label
)

return the time (time_t) when a variable was
last updated
Example:
@variable_time(ctl_spd) returns
1150897824.87

char* units_tag(char *label,
char *tag)

return a tag with value and units for a
variable
Example:
@units_tag(‘ctl_spd’, ‘speed’)
returns “speed=1000.5[rpm]”

char* value_units(char *label)

return a string which contains the
value[units] of a variable
Example:
@value_units(‘ctl_spd’) returns
“1000.5[rpm]”

CyFlex® Variables, Units, and Computed
Expressions

Version 16 19
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Function Description

short ctrl_loop_mode(char *loop
)

return the open/closed mode of a control
loop – where 0 =closed loop, 1=open loop
and loop is the label of the feedback variable
Example:
@ctrl_loop_mode(fuel_t)

short file_info(char *filename,
char *type)

This function duplicates the C access()
function. It determines the access
permissions of a file.
type can be either W_OK (for writing), R_OK
(for reading), or X_OK (for execute). The
return will be TRUE if the specified access
mode is permitted.
Example:
@file_info(
‘/specs/PAM_datapoint’, ‘W_OK’)
returns TRUE if the file is writeable

int array_to_stat(char
*arr_label, char*stat_label, int
n)

This function will perform the standard
statistical analysis on the first ‘n’ values
found in the specified 1-dimensional array
variable. The array variable must be of the
REAL type.
Example:
@array_to_stat(‘myarr’,
‘mystat’, 10[none]) -- analyzes the
first 10 values in myarr

short set_array(char *label,
char *value)

This function will initialize all of the values of
an array to the specified value.
Example:
@set_array(‘my_array’, ‘0’) this
fills the entire array with zeroes

CyFlex® Variables, Units, and Computed
Expressions

Version 16 20
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Function Description

double var_to_double(char *label
)

This function searches memory for the
specified variable label and returns a double
floating-point value equivalent to the
contents of the variable, regardless of the
data type.
The ‘label’ argument should not be
included in quotes.
Example:
@var_to_double(Speed)

-999999 is returned if the label is invalid or a
string variable cannot be converted to a
floating-point value

LOGICAL is_name_ready(char
*reg_name, char *wait_time)

This function returns a 1 (TRUE) if
reg_name is a valid registered name of an
application. The function will repeatedly test
for the name for wait_time (in seconds)
and return a 0 (FALSE) if the name is not
present after wait_time seconds.
Example”
@is_name_ready(‘asam3_1’, ‘10’)

The name asam3_1 is typically used for the
instance of asam3cli that manages
communications with a CUTY device. If
asam3cli is running, then this function will
return a TRUE value.

int get_bits(char *label,

int start_bit, int length)

This function returns an integer value from
the variable from the starting bit for the next
length bits.
Example
@get_bits(Speed, 4, 8)

This reads the ‘Speed’ variable and starting
from the 4th bit, reads and returns the value
of the next 8 combined bits as a value.

LOGICAL get_logi_bit(char *
label, int bit_location)

This function returns a LOGICAL value for
the specified bit from the variable.
Example
@get_logi_bit(ctrl_spd, 5)

This reads the ctrl_spd’ variable and
returns 1 or 0 for the 5th bit.

CyFlex® Variables, Units, and Computed
Expressions

Version 16 21
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Function Description

int check_finite(char *label)

This function returns 1 or 0 depending on
whether the variable given is a NAN or other
undefined or special value. If it is a NAN,
IFINITY, or other special value, it will return
a 0. If it is a finite and readable value, it
returns a 1.

int xml_secs(char *xml_date_time
)

This function returns the number of seconds
since Jan. 1, 1970 for the specified
xml_date_time string. Examples:
@xml_secs(‘2018/06/19T12:00:00Z’)

@xml_secs(‘2018-06-19T12:00:00Z’)

double polyRoot(char *target,
char *range, char *table_pathname
)

This function will return the root of a
polynomial calibration table of
POLYNOMIAL_RANGE type. All 3 arguments
are literal strings enclosed by single quotes.
target -- the y-parameter target with units,
for example ‘100[ppm]’
range -- the range index – for example, ‘1’
table_pathname -- the full pathname of
the calibration table file, for example,
‘/cell/tables/mytable.tbl’

@polyRoot(‘100[ppm]’, ‘2’,
‘/data/CO2Cal.tbl’)

Note that the table does not have to be an
active calibration table and can be located in
any directory.

int hex_2_dec(char *hexstring)
Convert a hexadecimal string to a decimal
integer value, for example:
@hex_2_dec(‘20’) returns 32

Char *dec_2_hex(char *label)

Convert the value of an integer variable to a
hex string, for example: if variable count is
32
@dec_2_hex(count) returns the
string “20”

Char *parse_line(char *label,
char *optional_delim, int N)

Parse a string variable value and return the
contents of the Nth token in the string. (N
starts at 0). The label may be either a
STRING or STRING_ARRAY variable.
Example:

CyFlex® Variables, Units, and Computed
Expressions

Version 16 22
Proprietary and Confidential March 21, 2024 Variables, Units, and Computed Expressions

Function Description
If the contents of variable ‘my_list” contains a
string “ list0 list1 list2 list3”
@parse_line(‘my_list’, ‘ ‘, 2)

Will return the string “list2”.
Note that the label and the optional_delim
must be single-quoted.
This function will be available in 6.3.33 and
later versions.

	1 Overview
	2 Real Variables
	3 Integer Variables
	4 Logical Variables
	5 String Variables
	6 Units
	7 Computed Expressions
	7.1 Variables
	7.2 Constants
	7.3 Arithmetic Operators
	7.4 Logical Expressions
	7.5 Logical Operators
	7.6 Comparison Operators
	7.7 Bitwise Operators
	7.8 Examples of Expressions
	7.9 Expressions without Units Conversion
	7.10 Functions

