

Version 7

March 6, 2024

Developed by Transportation Laboratories

Version History

Version	Date	Revision Description
1	1/25/2016	Initial publication
2	6/29/2016	Add note to Appendix A. Specification File
3	8/23/2018	Format with SGS brand
4	4/8/2020	Retrofit to new template
5	12/13/2021	Revised Section 3 Starting the Application on page 3 to remove inline gas_mix usage content and add hypertext linked cross-reference to its usage help on cyflex.com.
6	6/16/2022	Updated hypertext linked cross-reference to cyflex.com usage description for gas_mix in Section 3 Starting the Application on page 3
7	3/6/2024	Rebrand to TRP Laboratories

Document Conventions

This document uses the following typographic and syntax conventions.

- Commands, command options, file names or any user-entered input appear in Courier type. Variables appear in Courier italic type.
 - **Example:** Select the cmdapp-relVersion-buildVersion.zip file....
- User interface elements, such as field names, button names, menus, menu commands, and items in clickable dropdown lists, appear in Arial bold type.
 - Example: Type: Click Select Type to display drop-down menu options.
- Cross-references are designated in Arial italics.
 - Example: Refer to Figure 1...
- Click intra-document cross-references and page references to display the stated destination.
 - Example: Refer to Section 1 Overview on page 1.

The clickable cross-references in the preceding example are 1, Overview, and on page 1.

CyFlex Documentation

CyFlex documentation is available at https://cyflex.com/. View Help & Docs topics or use the Search facility to find topics of interest.

Computing Gas Stream Composition and Mass Flow

Table of Contents

1	OVERVIEW	. 1
2	PREREQUISITES	. 2
3	STARTING THE APPLICATION	. 3
API	PENDIX A. SPECIFICATION FILE	. 4

1 Overview

The gas_mix command computes the composition and mass flow of a gas stream which is the result of mixing of two or more input gas streams.

The command is normally started in the go script that starts CyFlex.

2 Prerequisites

The computations performed by <code>gas_mix</code> rely on known composition and mass flow of the input gas streams. These streams may have known composition defined in a specification file such as might be the case for pure propane or they might be a variable composition derived from computed streams such as computed wet air mass flow or a natural gas analyzer (ONGA).

Configure the go script per the following example to enable gas mix computations.

```
Example startup sequence in go.scp
#
"init properties" and "init composition" must precede
# launching of "subsonic"
# init properties creates the memory for composition and property
# variables
init properties
# init compositon reads /specs/properties/comp specs.NNN and initializes
# the values of composition variables to the last value saved when running
# or those permanently defined by a comp.<STREAM> file
init composition
# update composition is designed to receive continuous updates of natural
# gas composition from a central gas analyzer
update composition &
# gas prop computes the properties of the streams identified in
# prop specs.NNN
gas prop 12 1000 /specs/properties/prop specs.305 +c &
subsonic 12 SLO /specs/subsonic +c &
gas mix 12 SLO /specs/properties/mix specs.305 +c &
```


3 Starting the Application

The program is normally started in the go.scp startup script and is memory-resident from then on, computing the composition and maximum flow at the rate specified on the command line.

Refer to gas mix usage help on cyflex.com for command syntax.

Appendix A. Specification File

The following is an example specification file used for gas_mix. All variables must be defined elsewhere in the system.

```
######################## Example spec file #####################
# line 1: identify the output stream composition file and output
stream
          mass flow variable
#
#
          These 2 variables are output variables - they will be
          modified by the gas mix application
#Output Stream composition
                              massflow
faC.
                              fa mf
# line 2-n Identify the input streams which are being mixed - There
must be
          a composition variable and mass flow for each stream, so
the
          number of streams which can be mixed is limited by the
current
          maximum number of composition types (~20).
#Input Streams- this is a list of the streams that are being mixed
               (1 line per stream)
#composition
                             massflow
                              (note that the input mass flow may be
either
                              a REAL or STATISTICAL variable)
inlet airC.
                            air mtr0 mf
ngC.
                            ng mf
```