

CyFlex® Master Scheduler

Version 4
March 12, 2024

Developed by Transportation Laboratories

CyFlex® Master Scheduler

Version 4 i
Proprietary and Confidential March 12, 2024 CyFlex Master Scheduler

Version History
Version Date Revision Description

1 1/25/2016 Initial publication

2 4/10/2020 Retrofit to new template

3 6/20/2022 Added hypertext linked cross-reference to cyflex.com usage
help for scheduler in Section 1.1 System Watchdog on page 1
and updated additional hypertext linked cross-references to
cyflex.com usage help descriptions.

4 3/12/2024 Rebrand to TRP Laboratories

Document Conventions
This document uses the following typographic and syntax conventions.

• Commands, command options, file names or any user-entered input appear in Courier
type. Variables appear in Courier italic type.
Example: Select the cmdapp-relVersion-buildVersion.zip file….

• User interface elements, such as field names, button names, menus, menu commands,
and items in clickable dropdown lists, appear in Arial bold type.
Example: Type: Click Select Type to display drop-down menu options.

• Cross-references are designated in Arial italics.
Example: Refer to Figure 1…

• Click intra-document cross-references and page references to display the stated
destination.
Example: Refer to Section 1 Overview on page 1.

The clickable cross-references in the preceding example are 1, Overview, and
on page 1.

CyFlex Documentation
CyFlex documentation is available at https://cyflex.com/. View Help & Docs topics or use the
Search facility to find topics of interest.

https://cyflex.com/

CyFlex® Master Scheduler

Version 4 ii
Proprietary and Confidential March 12, 2024 CyFlex Master Scheduler

Table of Contents
1 OVERVIEW .. 1

1.1 SYSTEM WATCHDOG ... 1

1.2 CRITICAL AND NON-CRITICAL APPLICATIONS .. 1

1.3 INITIAL STATE ... 1

2 REGISTERING AN APPLICATION WITH THE SCHEDULER .. 2

2.1 TIMERS ... 4
3 LAUNCHING AN APPLICATION .. 6

4 FAILURES ... 7

4.1 FAILURE MODES ... 7

4.2 DIAGNOSING A FAILURE ... 7

4.3 RECOVERING FROM A WATCHDOG FAILURE .. 9

CyFlex® Master Scheduler

Version 4 1
Proprietary and Confidential March 12, 2024 CyFlex Master Scheduler

1 Overview

The scheduler task monitors the integrity of processes running in CyFlex.

1.1 System Watchdog
The scheduler task manages the system watchdog. The watchdog is a digital output channel
which is assumed to perform the function of shutting down a test system in a safe manner if the
system is not functioning properly. The watchdog channel equates to a heart-beat that must be
continually toggling between the ON and OFF states at a certain rate (once per second). If the
change of state does not occur within a certain period of time, a shutdown sequence starts to
deactivate the test system. The characteristics of the actions that occur when the watchdog
channel stops toggling are controlled by the design of an external hardware system. The
hardware system must be designed to perform an appropriate sequence of actions. Some
systems may not be equipped with this hardware. The external watchdog system will vary from
site-to-site or cell-to-cell since they are not controlled by the software. Refer to cyflex.com usage
help for scheduler for command syntax and options.

Identify the watchdog channel to the scheduler with the do_specs command keyword
WATCHDOG in the specifications of the digital output channels. Refer to cyflex.com usage for
do_specs.

1.2 Critical and Non-Critical Applications
An application registers itself with the scheduler when it starts up and may subsequently
modify its registration features. Each application can register as being a “critical” task or a “non-
critical” task. If a failure occurs with a task that registered as “critical’, then the scheduler
task will stop toggling the “watchdog” channel. The external watchdog hardware system, if it
exists, will start the system shutdown sequence for which it was designed.
Should the faulty application recover from the failure and signal the scheduler accordingly,
the scheduler will begin toggling the watchdog channel again. This does not guarantee that
the external hardware will immediately recover, since some systems have been designed to
require a manual reset of the watchdog circuitry by the test cell operator.

1.3 Initial State
Applications may be designed to be initialized with a reconfiguration in progress. Examples are
limit_specs and evnt_rsp. The result is that the scheduler will immediately begin
counting down the specified timeout for reconfiguration. If the timeout limit is exceeded before
the appropriate configuration of the application takes place and the application is critical, then
the watchdog will be suspended. For example, if either of these applications is launched in the
go.scp startup file, but limit_specs” is not launched, then the watchdog will fail and the
engine cannot be started. Any application can be designed to operate this way as a protection
to ensure that it is properly configured at startup. Refer to Section 2 Registering an Application
with the Scheduler on page 2.

https://cyflex.com/index.php/usage-help-manual/10-standard-services/scheduler
https://cyflex.com/index.php/usage-help-manual/14-i-o-systems/do_specs/

CyFlex® Master Scheduler

Version 4 2
Proprietary and Confidential March 12, 2024 CyFlex Master Scheduler

2 Registering an Application with the Scheduler

The following code segment shows the use of the function ms_initialize() to register the
application with the scheduler.

//This is stripped down code for an application that only supports the SLO //interval
//
// my_app 19 SLO +c &
//
#include “asset.h”
#include “errors.h”
#include “asset_pt.h”
#include “sys_attr.h”

main (int argc, char *argv[])
{
 union
 {
 GLOBAL_CONFIG_EVENT global_config;
 } event_in;

 // the message structure we will
 // send to the scheduler
 PROCESS_DONE_EVENT
 done;
 // this is a list of input and
 // output events
 long
 config_eid,
 timer_eid,
 global_eid,
 done_eid,
 wait_eid;

 short
 status = NO_ERROR;

 LOGICAL
 critical,
 hold_in_config;

 // create our own session
 _setsid();
 // register with child_adm so that
 // slay_stuff will kill this app

 status = join_layer(APPLICATION_LAYER);

 if(status != NO_ERROR)
 {
 log_error(ACTION(ERR_SCRN | STD_OUT),
 status,
 "couldn't join app layer");

 exit(-1);
 }

 // place our PID in the done message

CyFlex® Master Scheduler

Version 4 3
Proprietary and Confidential March 12, 2024 CyFlex Master Scheduler

 done.task_id = getpid();
 /* set up the done event message */
 done.process_interval = Sys_attr->plist[2].interval;

 // determine if +c argument is there

 critical = (strcmp(argv[argc-1],"+c") == MATCH)?TRUE:FALSE;

 // if critical, initialize to reconfig in
 // progress
 hold_in_config = critical;

 // this function gets the event id of
 // global_config and done events,
 // and registers
 // with the scheduler for those
 // timers specifed
 status += ms_initialize(
 argc - 1,
 argv + 1,
 “my_app”,
 &done_eid,
 &global_eid,
 10, /* reconfig timeout (sec)
 20, /* max overruns of timer signal (sec)
 critical
);

 // do initialization and attach to
 // the process timer event and the
 // process config event
 status += init(&timer_eid, &config_eid);

 if(status != NO_ERROR)
 {
 log_error(ACTION(ERR_SCRN),
 TASK_INITIALIZATION_FAILURE,
 "unable to initialize properly");
 exit(0);
 }
 /* loop forever waiting on an event
 from the event administrator */
 for (EVER)
 {
 /* wait on event */

 status = event_wait (&event_in,
 sizeof(event_in),
 &wait_eid);

 event_found = FALSE;

 /* We should never get an error from
 the event_wait, but if we do we can
 go into an infinite loop. The
 following code with the set_timer
 delay forces this process to give up
 cpu time to other processes. At least
 we will be able to run some other shell
 to diagnose the problem. */

CyFlex® Master Scheduler

Version 4 4
Proprietary and Confidential March 12, 2024 CyFlex Master Scheduler

 if(status != 0)
 {
 log_error(ACTION(ERR_SCRN),
 EVENT_WAIT_ERROR,
 "error from event_wait- status=%d",
 status);
 sleep(1);
 continue;
 }

 if(wait_eid == timer_eid)
 {

 // send reconfig state to scheduler

 done.reconfig = cfg_in_progress();

 /* set the done event */
 status = event_set(done_eid,
 &done,
 sizeof (done));

 /* is the event a specified input
 event */
 process(wait_eid);
 }

 else if(wait_eid == config_eid)
 {
 config();

 }
 /* was the event a configuration? */

 else if(wait_eid == global_eid)
 {
 if(reconfigure(event_in.global_config)
 {
 config_variables();
 }
 }

 } /* end of for loop */

} /* end of function */

2.1 Timers
An application may inform the scheduler that it is using any or all of the 6 defined process
intervals: WARP/FAS/MED/SLO/USR1/USR2. These interval values are defined for the system
by command line arguments when the scheduler is started:
scheduler PRI=21 FAS=20 MED=100 SLO=1000 USR1=2000 USR2=5000 WARP=5 &

The PRI option specifies the priority at which the scheduler with 21as the recommended
value. The various process intervals are optional, but there must be at least one interval
specified. The values are in units of milliseconds. Only those intervals specified on the

CyFlex® Master Scheduler

Version 4 5
Proprietary and Confidential March 12, 2024 CyFlex Master Scheduler

command line of the scheduler may be used by other applications for registration with the
scheduler.
When an application informs the scheduler that it is using a particular process interval, the
scheduler expects that the application will signal the scheduler that it has completed the
processing associated with that interval. It does this each time it receives that timer event. It
also informs the scheduler whether it is actually processing data or whether it is currently in
a “reconfiguration” state. It sends this information to the scheduler by setting the DONE
message event. This message includes the process ID, timer value, and reconfiguration state.
When registering a particular timer with the scheduler, the application must also specify two
limits.

1. The maximum time allowed for the reconfiguration state
2. The maximum time allowed between the timer event and the DONE event

If either of these limits is exceeded, then the scheduler will respond depending on whether
the application is registered as being ‘critical’ or not. If critical, the watchdog output is killed and
an error message is generated. If non-critical, the only action is an error message.

CyFlex® Master Scheduler

Version 4 6
Proprietary and Confidential March 12, 2024 CyFlex Master Scheduler

3 Launching an Application

Not every application can use the scheduler and watchdog. The application must be
designed to programmatically support the registration, timer handling, and DONE event
response. Assuming that the application is designed properly, there is a general form for
launching such applications, although there may be exceptions. Refer to the cyflex.com Usage
Help Manual for application details.
 my_app <priority> <list of intervals> [+c] &

+c indicates that the task is to be registered as “critical”. It must be the last argument.

Example:
 my_app 16 FAS SLO +c &

The list of intervals is determined as a function of the application and possibly which process
intervals are included in its specifications.

https://cyflex.com/index.php/usage-help-manual/
https://cyflex.com/index.php/usage-help-manual/

CyFlex® Master Scheduler

Version 4 7
Proprietary and Confidential March 12, 2024 CyFlex Master Scheduler

4 Failures

4.1 Failure Modes
The scheduler task handles three modes of failure and will perform either the critical or non-
critical actions for all three:

1. Application has died and never sends the DONE event
2. Application is not able to process the timer events fast enough and exceeds the

maximum time limit for a particular process interval
3. Application is in the reconfiguration state longer than the specified maximum time

An additional failure mode can occur which will not be apparent to the scheduler task that it
cannot report. One of the processes handling the DO output function could fail and thus cause
the watchdog hardware circuitry to initiate a shutdown process. Possible cause are:

• The do_logi_xfer task died.
• The translation of DO specifications failed or was not run.
• The DO driver failed or was not activated properly.
• The DO hardware channel that operates the external watchdog hardware failed.
• The external watchdog hardware failed.

4.2 Diagnosing a Failure
1. The scheduler task will generate error messages indicating failures:

Error 0 in Task: scheduler ,NID: 3 PID: 17977 On:13:13:09 01/05/10
File: ms_sig_list.c Line: 195
watchdog suspended due to named process<comp_ctrl>[12170] for interval <20>

Error 0 in Task: scheduler ,NID: 3 PID: 17977 On:13:13:09 01/05/10
File: ms_sig_list.c Line: 183
Named process <comp_ctrl>[12170] removed from 20 list

2. The ms_diag application will report all of the applications that have registered with the
scheduler and show their current state and a summary of all failures. The example
ms_diag output below shows that the do_logi_xfer and comp_ctrl tasks are not
responding; they were slayed in this case. The comp_ctrl task also was registered as
critical and thus caused the suspension of the watchdog output as reported in the error
message above.

The following entries may have the several keys appended
 to the line. The following are possible keys
 *0 > the process has overrun its response counter
 and is not responding
 *R > the process is responding but has been in
 the reconfiguration state too long
 *C > the process is a critical task

 Enter 'use ms_diag' for more information on Active Flag

Index Active Task Name PID Process Overrun Reconfig
 Flag Rate value/limit value/limit

CyFlex® Master Scheduler

Version 4 8
Proprietary and Confidential March 12, 2024 CyFlex Master Scheduler

 0 1 ai_transfer 2618 FAS 0/500 0/5001 *C
 1 0 do_logi_xfer DEAD FAS 251/250 0/2501 *O
 2 1 ao_transfer 9792 FAS 0/500 0/2501
 3 1 ctrl_task 12159 FAS 0/500 0/2501 *C
 4 0 comp_ctrl DEAD FAS 501/500 0/2501 *O*C
 5 0 dwpt 14221 FAS 0/500 0/2501
 6 1 comp_perf 12169 FAS 0/500 0/2501
 7 0 GL_SM415 12175 FAS 0/500 0/2501
 8 0 Limit 26512 FAS 0/500 0/25001*C
 9 0 fac 7681 FAS 0/500 0/25001*C
 10 1 RunAver 6659 FAS 0/1000 0/2501

 0 1 ai_transfer 3643 MED 0/100 0/1001 *C
 1 1 ctrl_task 12162 MED 0/100 0/501 *C
 2 0 ng 12171 MED 0/100 0/501 *C
 3 0 hsda 12172 MED 0/100 0/501
 5 0 dwpt 14221 MED 0/100 0/501
 6 1 comp_perf 12169 MED 0/100 0/501
 7 0 GL_SM415 12175 MED 0/100 0/501
 8 0 Limit 26512 MED 0/100 0/5001 *C
 9 0 fac 7681 MED 0/100 0/5001 *C
 10 1 RunAver 6659 MED 0/200 0/501

 0 1 ai_transfer 3643 SLO 0/10 0/101 *C
 1 1 do_word_xfer 29247 SLO 0/10 0/26
 2 1 fici_xfer 31297 SLO 0/10 0/151
 3 1 ctrl_task 12162 SLO 0/10 0/51 *C
 4 1 EvntResp 12164 SLO 0/20 0/51 *C
 5 1 fac 7681 SLO 0/10 122/501 *C
 6 0 hsda 12172 SLO 0/10 0/51
 7 1 Limit 26512 SLO 0/10 122/501 *C
 10 1 comp_perf 12169 SLO 0/10 0/51
 13 0 pms 11975 SLO 0/10 0/501
 15 1 cell_mon 12802 SLO 0/10 0/101 *C
 16 1 gasfl 15058 SLO 0/10 0/51
 17 1 RunAver 6659 SLO 0/20 0/51
 18 1 volef 4819 SLO 0/10 0/26
 19 1 addwater 2772 SLO 0/10 0/26

 Failure causes
 The following is a list of processes that have overrun their
 response counter or their configuration counter. It also means
 that the process is still not responding to the scheduler.
 If a particular entry contains 'critical', then the watchdog
 would have been suspended as a result of the overrun.

overrun do_logi_xfer id= DEAD FAS
critical overrun comp_ctrl id= DEAD FAS

CyFlex® Master Scheduler

Version 4 9
Proprietary and Confidential March 12, 2024 CyFlex Master Scheduler

4.3 Recovering from a Watchdog Failure
After appropriate investigation of the cause and problem correction, use either of the following
methods to recover from a watchdog-induced shutdown:

1. Run a go.
2. Restart the offending task(s) and enter the clear_watchdog command.

Also, depending on the particular configuration of the watchdog hardware circuitry, the
watchdog circuit may have to be manually reset. Refer to cyflex.com usage help for the
clear_watchdog command.

https://cyflex.com/index.php/usage-help-manual/10-standard-services/clear_watchdog/

	1 Overview
	1.1 System Watchdog
	1.2 Critical and Non-Critical Applications
	1.3 Initial State

	2 Registering an Application with the Scheduler
	2.1 Timers

	3 Launching an Application
	4 Failures
	4.1 Failure Modes
	4.2 Diagnosing a Failure
	4.3 Recovering from a Watchdog Failure

