

Test Manager Support Tasks and Keywords

Version 6
February 14, 2024

Developed by Transportation Laboratories

Test Manager Support Tasks and Keywords

Version 6 i
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

Version History
Version Date Revision Description

1 11/1/2017 Initial publication

2 8/23/2018 Format to SGS brand

3 4/2/2020 Retrofit to new template

4 12/1/2021 As applicable, added hypertext linked cross-references to
cyflex.com usage help and CyFlex Manuals

5 5/31/2022 Updated all hypertext linked cross-references to cyflex.com
usage help descriptions

6 2/14/2024 Rebrand to TRP Laboratories

Document Conventions
This document uses the following typographic and syntax conventions.

• Commands, command options, file names or any user-entered input appear in Courier
type. Variables appear in Courier italic type.
Example: Select the cmdapp-relVersion-buildVersion.zip file….

• User interface elements, such as field names, button names, menus, menu commands,
and items in clickable dropdown lists, appear in Arial bold type.
Example: Type: Click Select Type to display drop-down menu options.

• Cross-references are designated in Arial italics.
Example: Refer to Figure 1…

• Click intra-document cross-references and page references to display the stated
destination.
Example: Refer to Section 1 Overview on page 1.
The clickable cross-references in the preceding example are 1, Overview, and on page
1.

CyFlex Documentation
CyFlex documentation is available at https://cyflex.com/. View Help & Docs topics or use the
Search facility to find topics of interest.

https://cyflex.com/

Test Manager Support Tasks and Keywords

Version 6 ii
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

Table of Contents
1 OVERVIEW .. 1

2 HANDLING OF SUPPORT APPLICATIONS ... 2

3 ASYNCHRONOUS COMMUNICATION ... 3

4 DEVCOM DEVICE COMMUNICATION .. 4

4.1 @DEVCOM_ACTIONS .. 4

4.2 @DEVCOM .. 4
5 CUTY COMMUNICATION ... 6

5.1 @CUTY_ACTIONS .. 6

5.2 CUTY_SET ... 6

5.3 @CUTY_RAMP .. 7

5.4 @CUTY_GET ... 7

5.5 @CUTY_COMMAND_MESSAGE ... 7
6 ASAM3 COMMUNICATION .. 8

6.1 @ASAM3_ACTIONS .. 8

6.2 @ASAM3_SET ... 8

6.3 @ASAM3_RAMP.. 9

6.4 @ASAM3_GET... 9

6.5 @ASAM3_COMMAND_MESSAGE ... 9
7 STABILITY .. 10

7.1 @STABILITY_ACTION .. 10

7.2 @STABILITY_SPECS .. 11

8 TEST LIMITS ... 12

8.1 @LIMIT_SPECS ... 12
8.2 @LIMIT_SPECS_ALL .. 13

9 TEST COMPUTE ... 14

10 FUEL READING CONTROL ... 15

10.1 @FUEL_READING ... 15

10.2 @FUEL_READING_SYNC ... 16

11 WRITE VALUES .. 17
12 STATE MONITOR .. 18

13 CYBER APPS .. 20

13.1 @CYBER_ACTIONS .. 20

13.2 @CYBER .. 21

14 UNICO DYNO CONTROLLER .. 22

Test Manager Support Tasks and Keywords

Version 6 iii
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

14.1 ECM COMMUNICATIONS .. 22

14.1.1 @UNICO_GET .. 22

14.1.2 @UNICO_SET .. 23

15 AUXILIARY TASKS ... 24

15.1 TEST TABLES AND VRBL_TO_FILE APPLICATIONS .. 24

Test Manager Support Tasks and Keywords

Version 6 iv
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

LIST OF TABLES
TABLE 1: @ASC DATA FIELDS ... 3

TABLE 2: @DEVCOM_ACTIONS DATA FIELDS .. 4

TABLE 3: @STABILITY_ACTION DATA FIELD .. 10

TABLE 4: @STABILITY_SPECS DATA FIELDS .. 11

TABLE 5: @LIMIT_SPECS_ALL DATA FIELDS .. 13

TABLE 6: @CREATE_EXPRESSION DATA FIELDS .. 14
TABLE 7: @FUEL_READING DATA FIELDS .. 15

TABLE 8: @FUEL_READING_SYNC DATA FIELDS .. 16

TABLE 9: @WRITE_VALUES DATA FIELDS .. 17

TABLE 10: @CYBER_ACTIONS DATA FIELDS ... 20

TABLE 11: @CYBER_ACTIONS SUCCESS_PATH OPTIONS ... 20

TABLE 12: @CYBER_ACTIONS FAILURE_PATH OPTIONS ... 20
TABLE 13: @CYBER DATA FIELDS.. 21

TABLE 14: @CYBER COMMANDS AND ARGUMENTS ... 21

TABLE 15: @UNICO_ACTIONS DATA FIELDS .. 22

TABLE 16: UNICO_GET DATA FIELDS ... 22

TABLE 17: @UNICO_SET DATA FIELDS ... 23

Test Manager Support Tasks and Keywords

Version 6 1
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

1 Overview

Several special applications other than gp_test can be controlled by the specifications in a
procedure file. The keywords which support these applications are not handled any differently in
creating the file, but there is a fundamental difference in how the process is handled. An
external task is spawned which runs concurrently with the Test Manager to manage the
requested process. This support application will be signaled by the Test Manager to perform
various operations. The sequence of communication generally consists of the steps described in
Section 2 Handling of Support Applications on page 2.

Test Manager Support Tasks and Keywords

Version 6 2
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

2 Handling of Support Applications

The following is the sequence of communication to perform support tasks.
1. The Test Manager spawns the support application with event names that will support the

communication with gp_test. This is usually a ‘start’ event, a ‘stop’ event, a
‘configuration’ event, and a ‘reply’ event.

2. Upon starting a test mode that uses the support features, gp_test will send the ‘stop’
event to clear existing specifications, followed by one or more ‘configuration’ events that
supply the details of functions it is to perform in this mode. These details are the lines in
the spec file which follow the @keyword.

3. If the keyword specifications include a start_code and that code is AT_START, then
the ‘start’ event is sent immediately to signal the support application to begin its
operations.

o If the code is AFTER_STABILITY, then the ‘start’ event is not sent until the
specifications supplied with @STABILITY_SPECS are satisfied.

o If the code is AT_END, then the ‘start’ event is sent just prior to termination of the
mode. The AT_END option is not used by every support application.

See /specs/gp/gp_template for a list of options for each keyword.

4. Most support applications will send a reply event upon finishing its operations. This
reply will contain a SUCCESS or FAILURE code. If a success_path and a
failure_path are supplied for this function, then that will terminate the test mode
and gp_test will jump to the mode or procedure specified for that termination path.
Refer to Section 5.1 @CUTY_ACTIONS on page 6 for an example of specifying these
paths.

5. If the test mode is terminated for some reason unrelated to the support application, such
as a mode timeout then gp_test will send the ‘stop’ event to the support application
and it will cease its operations. However, the support application does not terminate. It
will remain available for the next test mode which requires its services.

6. Support applications may be designed to handle keywords supplied in a specific test
mode, in which case an instance will be spawned for each mode where the keyword is
used.

o vrbl_to_file, refer to Section 15.1 Test Tables and vrbl_to_file Applications
on page 24

o state_mon, refer to cyflex.com usage help for state_mon

Other support applications may be designed so that one instance of the support
application handles all modes where the keyword is used.

o stability, refer to cyflex.com usage help for stability
o fr_collect (fuel reading control), refer to this presentation on cyflex.com
o ecm_communication (cuty_coll, asam3_coll, *ramping), refer

to cyflex.com usage help for the ECM Communication category.
o AK_sync, refer to cyflex.com usage help for AK_sync

https://cyflex.com/index.php/usage-help-manual/12-test-manager/state_mon/
https://cyflex.com/index.php/usage-help-manual/12-test-manager/stability
https://cyflex.com/index.php/lunch-and-learn-presentations/fuel-rate-measurement
https://cyflex.com/index.php/usage-help-manual/17-ecm-communication/
https://cyflex.com/index.php/usage-help-manual/16-smart-instrument-interfaces/ak_sync/

Test Manager Support Tasks and Keywords

Version 6 3
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

3 Asynchronous Communication

Use the @ASC keyword to send a command or series of commands to intelligent devices which
are attached on serial (RS-232) ports. The name field specifies to which device to send the
command. A configuration file must exist for each device.

Table 1: @ASC Data Fields

Data Field Explanation

stop_path

The stop_path determines what happens when all of the commands
are complete. The MODE_TERMINATE option specifies the test proceeds
to the next mode, otherwise the current mode remains in effect until a
timeout or other termination event occurs. Options are:
NONE
MODE_TERMINATE
WAIT_FOR_AUX
TIMEOUT

fail_path

The fail_path determines what action will be taken if a
communications error occurs or a fault code is returned from the
device. Options are:
NONE
TEST_DONE
RESTART
ELSE_MODE
NEXT_MODE

Example specification:
@ASC
 #strt_type stop_path fail_code name command interval event
 AT_START NONE NONE calterm "monitor" 0 -

Test Manager Support Tasks and Keywords

Version 6 4
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

4 DEVCOM Device Communication

DevCom is a Device Communication subsystem of CyFlex, used in testing scenarios to control
and communicate with Intelligent Electronic Devices that support a serial communications
protocol. Smoke meters are an example.
The DevCom subsystem is a collection of applications, device drivers, and user-configurable
specification files, developed to support a wide range of intelligent devices. This is
accomplished by allowing the user to customize communication with a particular device by
changing the specification file to work with the device’s characteristics without having to develop
a unique software application for that device.
Refer to the Device Communication User Guide for additional information.

4.1 @DEVCOM_ACTIONS
Use the @DEVCOM_ACTIONS keyword to specify the actions and timing associated with all the
DevCom communications for a particular test mode.

Table 2: @DEVCOM_ACTIONS Data Fields

Data Field Explanation

start_code Code for when to send the command. Options are AT_START or
AFTER_STABILITY. Default is AT_START.

success_path
Code for what action to take when communication is complete. Options are
NONE, MODE_TERMINATE, RETURN, a mode number, or a procedure file
pathname. Default is NONE.

fail_path
Code for what action to take if communication fails. Options are NONE,
MODE_TERMINATE, RETURN, a mode number, or a procedure file pathname.
Default is NONE.

Example specification:
DEVCOM_ACTIONS
 #start_code success_path fail_path
 AT_START MODE_TERMINATE /specs/gp/quit

4.2 @DEVCOM
The @DEVCOM keyword specifies, on the first line, a device name (instrument), a configuration
file for that instrument, and an optional field for restarting the support application when starting
this test mode. This line is followed by up to 20 “commands”. Each command is a string
consisting of a device command keyword such as the AOPT shown in an example below,
followed by a number of CyFlex variable names. This command is send by gp_test to the
support application where, using the configuration file, it is translated into a device specific
message. Refer to the Device Communication User Guide for information on how to set up a
configuration file for a particular instrument/device.

https://cyflex.com/wp-content/uploads/Device-Communication-User-Guide.pdf

Test Manager Support Tasks and Keywords

Version 6 5
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

Example specification:

DEVCOM .. commands are used to communicate with an AK communications
device,
usually an AVL smoke meter.

instrument name - Name associated with a task which actually
communicates with the device.

spec_filename

RESTART - anything entered as the 3rd fiels will cause
devcom_coll task to be terminated and restarted

for example:

@DEVCOM
#instrument_name spec_filename (optional RESTART)
 AVL483 /specs/xyz RESTART

Here are some examples for AVL 483 smoke meter.

in the /specs/AVL483.spec

#"AOPT,%d %d %d %d %d"

in gp test script

"AOPT SMBlkPcnt SMWhtVal SMGreyVal SMBlkVal"

Integer values retreived from executing the command will be placed
in asset variables SMBlkPcnt SMWhtVal SMGreyVal and SMBlkVal.

in the /specs/AVL483.spec
EDIL %d %f %f %f

in a gp test script

"EDIL SS_dil_typ_TR SS_dil_TR 1.00 10.00 1.00"

The values from asset variables SS_dil_typ_TR and SS_dil_TR are
passed into the command as well as the litteral values 1.00 10.00
and 1.00.

Test Manager Support Tasks and Keywords

Version 6 6
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

5 CUTY Communication

Several Test Manager keywords enable control of the ECM through communication with a
CUTY system. Four keywords specify the commands which are sent to the ECM and one
keyword specifies the timing and responses to completion of those actions. The latter keyword
is @CUTY_ACTIONS. It contains three data fields for the start_type, stop_path, and
fail_path. Those data fields have the same function as other keywords, so they will not be
described in detail here.

5.1 @CUTY_ACTIONS
If the @CUTY_ACTIONS keyword is not used, but one or more of the other CUTY commands are
used, then the actions default to AT_START, NONE, and NONE for start_type,
stop_path, and fail_path, respectively.

Example specification:
@CUTY_ACTIONS
 #start_type success_path fail_path
 AT_START MODE_TERMINATE /specs/gp/gp_hndl_cuty;23

In the preceding example, the communication would begin at the start of the test mode. When
all commands have been completed, the mode would be terminated and if there was a failure of
communication, execution would be passed to mode 23 in test procedure
/specs/gp/gp_hndl_cuty.

All CUTY commands specified in a particular test mode are queued in the order they are
entered in the procedure file. When communication begins, the commands are sent in that order
as rapidly as the ATA driver can process them. A reply is expected for each command to
indicate the next command can be sent. When all of the queued commands are sent, the mode
will be terminated if the stop_path is MODE_TERMINATE. If an error in communication
occurs, the fail_path option is used.

5.2 CUTY_SET
Use the CUTY_SET keyword to modify the value of a parameter in the ECM. The value field
that is transmitted to the ECM is always a string. The actual string to be transmitted may be
specified by enclosing it in single quotes. The value may be a constant, variable, or expression.
For instance, the FUELOVER variable expects HEX number format, so a value of FF or 0xFF
would be a valid field and the value of 255 would not give the same result. Each variable that is
sent to the ECM is followed with a request to read the value back to verify that the change
actually took place. If the value read back is different than the one transmitted, then one retry
attempt is made. If the 2nd retry is unsuccessful in changing the value, then an error is reported.
Example specification:
@CUTY_SET
 #ECM_name ECM_variable value
 ECM0 ‘T_AIM_PermitSwitchEnbl’ 0[none]
 ECM0 ‘T_ATM_bs_Enbl’ 0x0FFF8197’

Test Manager Support Tasks and Keywords

Version 6 7
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

5.3 @CUTY_RAMP
Use the @CUTY_RAMP keyword to generate ramping operations on ECM variables. A support
task will be spawned to manage the commands required to generate the ramps. The targets
and ramp rate may be expressed as decimal constants, variable labels, or computed
expressions. Note that the units of any variable transmitted to the ECM must be [none]. The
constants used in the @CUTY_RAMP specification do not require that the units be appended.
The termination field is optional. The only option for that field is FREEZE. If FREEZE is
specified, then when the mode is terminated, the last value that was produced will be the final
output value. Otherwise, the final output value will always be the end value of the ramp.
Example specification:
@CUTY_RAMP
#ECM_name ECM_variable start end_target rate termination
ECM0 ‘SOI_Override_Val’ soi_override_val soi_setpt 0.5[none]

5.4 @CUTY_GET
The @CUTY_GET keyword retrieves the value of an ECM variable from the ECM and places it in
a CyFlex real variable. This can be used to test that a value was really modified or to get data
which will be logged as part of a fuel reading, displayed, etc.
Example specification:
@CUTY_GET
#ECM_name ECM_variable CyFLex_label
ECM0 ‘EVT_ti_DieselOntime2_T[0]’ array_value

5.5 @CUTY_COMMAND_MESSAGE
Use this keyword to send various commands to the ECM.
Example specification:

@CUTY_COMMAND_MESSAGE
 #ECM_Name command_code
 ECM0 REQ_CHGLOCK

The commands of the preceding keywords are queued in the order they are entered in the
procedure file. It is possible to use the same keyword more than once to control the sequence of
transmission of the commands. The example below illustrates this:

@CUTY_SET
 #ECM_name ECM_variable value
 ECM0 ‘T_AIM_PermitSwitchEnbl’ 0[none]
 ECM0 ‘T_ATM_bs_Enbl’ 0x0FFF8197’

@CUTY_GET
 #ECM_name ECM_variable CyFLex_label
 ECM0 ‘EVT_ti_DieselOntime2_T[0]’ array_value

@CUTY_SET
 #ECM_name ECM_variable value
 ECM0 ‘T_ATM_bs_Enbl’ 0x0FFF8197’

Test Manager Support Tasks and Keywords

Version 6 8
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

6 ASAM3 Communication

Several Test Manager keywords enable control of the ECM through communication with a
CUTY system. Four keywords specify the commands which are sent to the ECM and one
keyword specifies the timing and responses to completion of those actions. The latter keyword
is @ASAM3_ACTIONS. It contains three data fields for the start_type, stop_path, and
fail_path. Those data fields have the same function as other keywords, so they will not be
described in detail here.
Refer to ASAM3 MC Interface Setup for supplemental information.

6.1 @ASAM3_ACTIONS
If the @ASAM3_ACTIONS keyword is not used, but one or more of the other CUTY commands
are used, then the actions default to AT_START, NONE, and NONE for start_type,
stop_path, and fail_path, respectively.

Example specification:
@ASAM3_ACTIONS
 #start_type stop_path fail_path
 AT_START MODE_TERMINATE /specs/gp/gp_hndl_asam;23

In the preceding example, the communication would begin at the start of the test mode. When
all commands have been completed, the mode would be terminated and if there was a failure of
communication, execution would be passed to mode 23 in test procedure
/specs/gp/gp_hndl_asam.

All ASAM3 commands specified in a particular test mode are queued in the order they are
entered in the procedure file. When communication begins, the commands are sent in that order
as rapidly as the ATA driver can process them. A reply is expected for each command to
indicate the next command can be sent. When all of the queued commands are sent the mode
will be terminated if the stop_path is MODE_TERMINATE. If an error in communication
occurs, the fail_path option is used.

6.2 @ASAM3_SET
Use the @ASAM_SET keyword is to modify the value of a parameter in the ECM. The value field
that is transmitted to the ECM is always a string. Specify the actual string to be transmitted by
enclosing it in single quotes. The value may be a constant, variable, or expression. For
instance, the FUELOVER variable expects HEX number format, so a value of FF or 0xFF
would be a valid field and the value of 255 would not give the same result. Each variable that is
sent to the ECM is followed with a request to read the value back to verify that the change
actually took place. If the value read back is different than the one transmitted, then one retry
attempt is made. If the 2nd retry is unsuccessful in changing the value, then an error is reported.
Example specification:
@ASAM3_SET
 #reg_name ECM_name ECM_variable value
 asam3_1 ECM0 ‘T_AIM_PermitSwitchEnbl’ 0[none]
 asam3_1 ECM0 ‘T_ATM_bs_Enbl’ 0x0FFF8197’

https://cyflex.com/wp-content/uploads/ASAM3-Interface-Setup.pdf

Test Manager Support Tasks and Keywords

Version 6 9
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

6.3 @ASAM3_RAMP
Use the @ASAM3_RAMP keyword to generate ramping operations on ECM variables. A support
task will be spawned to manage the commands required to generate the ramps. The targets
and ramp rate may be expressed as decimal constants, variable labels, or computed
expressions. Note that the units of any variable transmitted to the ECM must be [none]. The
constants used in the @ASAM3_RAMP specification do not require that the units be appended.
The termination field is optional. The only option for that field is FREEZE. If FREEZE is
specified, then when the mode is terminated, the last value that was output will be the final
output value. Otherwise, the final output value will always be the end value of the ramp.
Example specification:
@ASAM3_RAMP
#reg_name ECM_name ECM_variable start end rate termination
asam3_1 ECM0 ‘SOI_Override’ soi soi_setpt 0.5 FREEZE

6.4 @ASAM3_GET
The @ASAM3_GET keyword retrieves the value of an ECM variable from the ECM and places it
in a CyFlex real variable. This can be used to test that a value was really modified or to get data
which will be logged as part of a fuel reading, displayed, etc.
Example specification:
@ASAM3_GET
#reg_name ECM_name ECM_variable CyFLex_label
asam3_1 ECM0 ‘EVT_ti_DieselOntime2_T[0]’ array_value

6.5 @ASAM3_COMMAND_MESSAGE
Use this keyword is used to send various commands to the ECM.
Example specification:

@ASAM3_COMMAND_MESSAGE
 #reg_name ECM_Name command_code
 asam3_1 ECM0 REQ_CHGLOCK

The commands of the preceding keywords are queued in the order they are entered in the
procedure file. It is possible to use the same keyword more than once to control the sequence of
transmission of the commands. The example below illustrates this:

@ASAM3_SET
 #reg_name ECM_name ECM_variable value
 asam3_1 ECM0 ‘T_AIM_PermitSwitchEnbl’ 0[none]
 asam3_1 ECM0 ‘T_ATM_bs_Enbl’ 0x0FFF8197’

@ASAM3_GET
 #reg_name ECM_name ECM_variable CyFLex_label
 asam3_1 ECM0 ‘EVT_ti_DieselOntime2_T[0]’ array_value

@ASAM3_SET
 #reg_name ECM_name ECM_variable value
 asam3_1 ECM0 ‘T_ATM_bs_Enbl’ 0x0FFF8197’

Test Manager Support Tasks and Keywords

Version 6 10
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

7 Stability

7.1 @STABILITY_ACTION
Use the @STABILITY_ACTION keyword to specify actions when stabilization occurs.

If the @STABILITY_SPECS keyword is used to specify stabilization criteria, then this keyword
may be used to specify what actions are required after the criteria are met. Possible actions are:

• MODE_TERMINATE

• TERMINATE_TO_ELSE_MODE

• WAIT_FOR_STABILITY

Table 3: @STABILITY_ACTION Data Field

Data Field Explanation
action_code A code which indicates certain special actions to perform

Example specification:
@STABILITY_ACTION
 #action_code
 MODE_TERMINATE

The preceding specification terminates the test mode when stabilization is complete.

Notes:

The actions associated with any keyword which uses the AFTER_STABILITY macro for a
start_type is assumed to be one of the actions taken when stability is complete.
The MODE_TERMINATE action means that when stabilization is complete, the test mode is
immediately terminated. It may be terminated prior to the completion of stability by other
mechanisms, such as timeout, limits, etc.
The WAIT_FOR_STABILITY action means that no other mechanism for mode termination
may precede the completion of stability. If some other action occurs prior to completion of
stability, the request to terminate is suspended until stabilization is complete. The
WAIT_FOR_STABILITY action code by itself does not specify that the mode be terminated,
only that no other action can cause termination prior to stability.
Use TERMINATE_TO_ELSE_MODE to force the execution of the mode specified with
keyword @ELSE_MODE when stability occurs.
The action codes may be used in combination to achieve the desired effect.

Additional example specifications:
@STABILITY_ACTION
 #action_code
 TERMINATE_TO_ELSE_MODE
Completion of stabilization will cause a branch to the mode specified by the @ELSE_MODE
keyword.

Test Manager Support Tasks and Keywords

Version 6 11
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

@STABILITY_ACTION
 #action_code
 WAIT_FOR_STABILITY
This mode cannot be terminated until stabilization is complete. Completion of stability will,
however, not necessarily cause the termination of the mode.

7.2 @STABILITY_SPECS
Use the @STABILITY_SPECS keyword to specify a list of the stability criteria that are to be
evaluated during the test mode. Stability is complete when all of the specified criteria are
achieved. Refer to Section 7.1 @STABILITY_ACTION on page 10 for a more complete
explanation of each type of stability criterion.

Table 4: @STABILITY_SPECS Data Fields

Data Field Explanation
type_code The type of criteria. Options are TIME_DELAY, VARIANCE,

DEVIATION, CURRENT_DEVIATION, K_VARIANCE,
STD_DEVIATION.

variable The variable label to which the criteria is supplied (except
type = TIME_DELAY)

timeout The time window associated with the criteria (except type
= CURRENT_DEVIATION) .

rate the rate at which the criteria is evaluated
reference The reference value for the criteria. This may be a

constant, variable, or computed expression.
tolerance The tolerance for the criteria.
minimum_reference For type=K_VARIANCE, the lower threshold for the

reference.

Example specifications:
@STABILITY_SPECS
#type_code variable timeout rate reference tolerance min_ref
DEVIATION TORQUE 20[sec] SLO 1200[lb_ft] 10.0 -

The engine torque must be within 10 lb.-ft of 1200 for 20 seconds to have stability.
@STABILITY_SPECS
#type_code variable timeout rate reference tolerance min_ref
VARIANCE fuel_rate 10[sec] SLO - .0[lb/hr]
TIME_DELAY - 20[sec]

If after at least 20 seconds the fuel_rate does not wander by more than 1 lb./hr. for 10
seconds, stabilization is achieved.

Test Manager Support Tasks and Keywords

Version 6 12
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

8 Test Limits

The Test Manager (gp_test) uses two keywords to allow changing the path of a test
procedure based on limits set on one or more variables. The functionality is very similar to that
supported by the limit application; refer to Limits Monitoring Applications. Specifying limits
with the gp_test keywords is only used to change the path of the test procedure When a test
procedure is loaded and contains either of the keywords, the test_limits support
application is launched. As the test procedures are read prior to start of the test, each of the limit
specifications is sent to the test_limits application as a configuration message. The limits
are not active until the mode in which the limit specification appears is started. Upon termination
of the mode, those limit specifications are disabled.

8.1 @LIMIT_SPECS
Use the @LIMIT_SPECS keyword to specify up to XXX limits per test mode. Each limit
specification has an optional next_path. This is the path that the procedure will jump to if the
limit is violated while this test mode is being executed. The default next_path is
MODE_TERMINATION, meaning terminate the mode when the limit is violated. Refer to
Section 3.1, @LIMIT_SPECS in Common Test Manager Keywords for further details.
Example specification:
@LIMIT_SPECS
 #label value type interval period_out next_path
 RPM 2400[rpm] U MED 10[sec] /specs/gp/gp_shutdown
 oilrfl_p 60[psi] U MED 5[sec] /specs/gp/gp_reset;25

Set an upper limit of 2400 RPM on engine speed. Execute the gp_shutdown test procedure if
this is exceeded for at least 10 seconds continuously. If oil rifle pressure exceeds 60 psi for 5
seconds, then run the gp_test procedure starting in mode 25.

Note:

The processing of the limit occurs only during the mode in which it is specified. It is enabled
when the mode starts and disabled when the mode terminates.

Violation of a limit will not cause the display to blink.
Additional example specification:
@LIMIT_SPECS
 #label value type interval period next_path
 coolant_t 60[deg_F] U SLO 0[sec] 22
 RPM 400[rpm] L SLO 0[sec] /specs/gp/gp_done
 oil_p "oil_model-5[psi]" L SLO 0[sec] RETURN

Branch to mode 22 if the coolant temperature exceeds 260F during this test mode and jump to
procedure gp_done if the engine speed drops below 400 rpm.
If the oil_p variable is more than 5 psi below the oil_model variable, return to the
calling procedure.

https://cyflex.com/wp-content/uploads/Limits-Monitoring.pdf
https://cyflex.com/wp-content/uploads/Common-Test-Manager-Keywords.pdf

Test Manager Support Tasks and Keywords

Version 6 13
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

8.2 @LIMIT_SPECS_ALL
Use the @LIMIT_SPECS_ALL keyword to specify a list of variables with limits set on them. If
the all of the limits are violated, then the mode is terminated. If the next_path field is 0
or -,then the default_next_mode path (in @MODE) is executed. The limit value may be
expressed as a constant, variable label, or computed expression.

Table 5: @LIMIT_SPECS_ALL Data Fields

Data Field Explanation

exit_path
The path to execute when/if all the specified limits are simultaneously
violated. This may be a mode number, a procedure pathname,
MODE_TERMINATE, or RETURN.

variable A variable on which the limit is set. This may be a real, integer, statistical,
property, or composition variable.

value The limit value (constant/variable/expression)
type Upper or lower limit: U|L

interval The rate at which to check the limit FAS|MED|SLO

period_out the period for which the limit must be violated before the action is taken

Example specification:
@LIMIT_SPECS_ALL
 #exit_path
 MODE_TERMINATE
 #label value type interval period_out
 RPM 2400[rpm] U MED 10[sec]
 blow_by 10[in_h2o] U SLO 0[s]

Set an upper limit of 2400 rpm on engine speed and an upper limit of 10[in_h2o] on blow_by.
Terminate the test mode if both are violated.

Notes:

The processing of the limit occurs only during the mode in which it is specified. It is enabled
when the mode starts and disabled when the mode terminates.
Violation of a limit will not cause the display to blink.
Two string variables can be specified to give the operator feedback on the state of this
specification.

Test Manager Support Tasks and Keywords

Version 6 14
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

9 Test Compute

Use the @CREATE_EXPRESSION keyword to create computed expressions that will be used
during a specific gp_test. This keyword was created in response to the amount of volume and
complexity that has been created in gen_labels.NNN. Sometimes it is advantageous to have
computed expressions that exist only during the duration of a specific test.

Note:

The keyword @CREATE_EXPRESSION must be placed in the header section of a test
procedure file somewhere between the start_mode and the first @MODE.

Table 6: @CREATE_EXPRESSION Data Fields

Data Field Explanation
variable The variable name of label used
type The variable can be: REAL|INTEGER|LOGICAL|STRING

units The type of units to be used with the created variable
event/timer The event name or timer designation that will evaluate the expression
expression The computed expression to be used

Example specification:
@CREATE_EXPRESSION
#(up to 16 per procedure)
@label type units event/time expression
myvar REAL rpm 1000 "if RPM>Idle_Speed then 700[rpm] else
Idle_Speed

mydesc STRING - 1000 "'test'+count"

The variable myvar is created as a REAL with RPM as its units and evaluated once a second.
The expression states that if RPM is greater than the value of Idle_Speed then set myvar to
a value of 700 rpm otherwise set it to the value of Idle_Speed. The variable mydesc is
created as a string variable that includes the value of test added to count.

Notes:

This keyword is the functional equivalent of gen_labels.NNN. However,
@CREATE_EXPRESSION does not support a history flag, tolerance, and a display format. The
display format defaults to 2 places for REAL variables.
The true/false descriptions of LOGICAL variables default to ON/OFF. The history flag is OFF
and the default tolerance is 1.0. The variable in a @CREATE_EXPRESSION specification will
be created if it does not already exist. If it does exist, but there is no computed expression
associated with it, then the computed expression will be created,
If the variable already exists and has a computed expression, then an error is reported.
The use of the @CREATE_EXPRESSION keyword causes gp_test to spawn the new task
named comptest.

Test Manager Support Tasks and Keywords

Version 6 15
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

10 Fuel Reading Control

The associated keywords take fuel readings and generate PAM datapoints.

10.1 @FUEL_READING
Use the @FUEL_READING keyword to take one or more fuel readings during this test mode. If
the desired_time is 0 or -, the time specified by the variable target_fr_tim will be
used.
The number_of_readings, interval, and desired_time data fields can all be
specified as a constant, variable label, or computed expression.

Table 7: @FUEL_READING Data Fields

Data Field Explanation

start_type Code for when to send a start signal to the collector task. Options are:
AT_START |AFTER_STABILITY |EXTERNAL_SYNC

stop_path
Code for what action to take when the fuel reading collector task
completes its function. Options are: NONE| MODE_TERMINATE|
RETURN |a mode number| a procedure file pathname.

number_readings The number of fuel readings to request
interval The time between requests (if number_readings > 1)

sync_event An event name for external synchronization

desired_time The desired fuel reading sample time; specifying a non-zero
desired_time will change the value of the target_fr_tim variable.

Example specifications:
 #start_type stop_path
 AFTER_STABILITY MODE_TERMINATE
 #number_readings interval sync_event desired_time
 1 0[s] - 0[s]

Request 1 fuel reading after stabilization is complete. Terminate the mode when the fuel reading
is complete.
@FUEL_READING
 #start_type stop_path
 AFTER_STABILITY MODE_TERMINATE
 #number_readings interval sync_event desired_time
 num_read 5[min - 90[sec]

Take three fuel readings to be determined by the value of the variable num_read at five-
minute intervals, each 90 seconds long. Terminate the mode when all three fuel readings have
been completed.

Test Manager Support Tasks and Keywords

Version 6 16
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

10.2 @FUEL_READING_SYNC
Use the @FUEL_READING_SYNC keyword to synchronize several processes that are required
to generate a PAM datapoint. The keyword allows the construction of a chain of events that
provide the synchronization.
This keyword allows multiple processes to be synchronized with fuel readings. The
synchronization is handled externally from gp_test. The specification consists of a list of
output events that will be emitted in the sequence that they are listed. Each output event is
emitted when all of the input events listed on its line and all preceding lines have been received.
This condition is overridden by the specified timeout (0 timeout indicates no timer). The timeout
for a particular line does not start until the output event on the previous line has been emitted.
All input events are attached at the time a fuel reading is requested, so if an input event of a
later specification line is received before those of a preceding line, it is still considered to be
satisfied, but the corresponding output event would not be emitted until all those preceding it
have been emitted.

 Note:

The maximum specified delay for this entire process is the value of the variable
FR_write_delay. If that time expires after the issuance fr_ready, the datapoint will be
written even if fr_write_ok is not received. For a better understanding of the variables and
events associated with fuel readings, refer to Gazette.6b.97-" Variables, Events, and
Processes associated with fuel readings”

Table 8: @FUEL_READING_SYNC Data Fields

Data Field Explanation

timeout maximum wait time for the specified input events - the output event is issued
if this timeout expires before all of the input events are received.

output_event An event that will be set when all of the specified input events are received or
the timeout expires

input_events Up to 4 input events which must all be received before this sequence in the
chain is satisfied.

Example specification:
@FUEL_READING_SYNC
#when all the input events have arrived, the output event is emitted
#and we go to the next spec. Keep doing that until the list is
#complete

#event_sync (event sequences required to complete a datapoint)
#max_timeout output_event input_event_list (up to 4)
 0[sec] TS_StrtAcq fr_ave_strt
 0[sec] TS_OpCondCmp HS_AcqInPrg fr_ready HS_AcqCmp
 0[sec] fr_write_ok HS_AnlsCmp

 Notes:

Fr_write_ok should always be the last output event.
FR_write_delay is automatically set to 4 minutes when @FUEL_READING_SYNC is used.
@FUEL_READING_SYNC can only be used in modes where @FUEL_READING or
@FUEL_READING_STATS are also used.

Test Manager Support Tasks and Keywords

Version 6 17
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

11 Write Values

Use @WRITE_VALUES to write text data into a file and control the data, format, and rate
through the test script. Essentially, a data logging type of operation may be created through
gp_test. The most likely use is to capture the value of a particular variable after the operating
conditions have been obtained through the test script.

Table 9: @WRITE_VALUES Data Fields

Data Field Explanation

start_type

Code for when to send a start signal to the collector task. Options
are: AT_START | AFTER_STABILITY | AT_END | NEW_FILE.
NEW_FILE means “open file to WRITE, removing previous copy of
the file

file_name The file where the data will be written. The filename can be a
computed expression, using the + symbol for string concatenation.

value
The ASSET variable or expression from which the value is to be
obtained. A dash - indicates no value/variable.

“format_string” The C format string to be used for formatting the write. Quotes are
required.

units (optional)

Optional definition of output units if the value is a computed
expression. Default units will be used if the value is a computed
expression and units are not entered unless the expression is
enclosed in braces { }.

Example specification:
@WRITE_VALUES
 #start_type file_name value "format_string" units
 AT_START /data/tq_sp - "rpm "
 AT_START /data/tq_sp - "torque \n"
 AT_START /data/tq_sp NOTIFY "%s\n"
 AT_START /data/tq_sp ctl_spd "%11.2f "
 AT_START /data/tq_sp "ctl_spd/2[none]" " %10.3f " rpm
 AT_START /data/tq_sp "{ ctl_spd/2[none] }" " %8.1f "
 AT_START /data/PC_format/pms_wrt.csv pms_cart ",@2.0i "
 AT_START /data/PC_format/pms_wrt.csv count ",@2.0i "

Test Manager Support Tasks and Keywords

Version 6 18
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

12 State Monitor
#--
@STATE_MON_ACTIONS -

success_path - exit path for successful return from state_mon
This may be MODE_TERMINATE, NONE, mode number,
or another gp_test procedure

failure mode - The exit path for a failure return from state_mon
This may be MODE_TERMINATE, NONE, mode number,
or another gp_test procedure

read_mode - must be READ or READ_ONCE

action_code - code to indicate the operational method used by
state_mon - one of the following options
VERIFY, MONITOR, IMMEDIATE

@STATE_MON_ACTIONS
 #success_path failure mode read_mode action_code
 MODE_TERMINATE 10 READ_ONCE VERIFY

#--
@STATE_MON_SPEC_FILES

spec_file_pathname - the pathname of the 'state_mon' specifications.
There can be a maximum of sixteen files

state_index - the label of the variable that will contain the
index value that should be read from the file.
The label should exist.

@STATE_MON_SPEC_FILES
 # spec_file_pathname state_index
 /specs/stbl/state_mon_specs state_index

#--

@STATE_MON_EXCEPTIONS

time_out - the length of time to allow the variables to reach
the specifified states. Valid entries are a value,
an Cyflex label, or a computed expression.
The label should exist.

timeout_path - the path to be taken when a timeout occurs. Valid
entries are mode number, MODE_TERMINATE, NONE, or
another gp_test procedure

state_change_path - the path to be taken when state_mon indicates that
a state variable, specified in one of the spec files,

Test Manager Support Tasks and Keywords

Version 6 19
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

with an action extension of _S has failed. Valid
entries are mode number, MODE_TERMINATE, NONE, or
another gp_test procedure

warning_fail_path - the path to be taken when state_mon indicates that
a state variable, specified in one of the spec files,
with an action extension of _W has failed. Valid
entries are mode number, MODE_TERMINATE, NONE, or
another gp_test procedure

critical_fail_path - the path to be taken when state_mon indicates that
a state variable, specified in one of the spec files,
with an action extension of _C has failed. Valid
entries are mode number, MODE_TERMINATE, NONE, or
another gp_test procedure

read_error_path - the path to be taken when state_mon indicates that
a read error occurred when the specification files
were read. Valid entries are mode number,
MODE_TERMINATE, NONE, or another gp_test procedure

@STATE_MON_EXCEPTIONS
time_out timeout state_change warning_fail critical_fail
read_error
path path path path path
 30[sec] 90 MODE_TERMINATE 10 15 20

#--

Test Manager Support Tasks and Keywords

Version 6 20
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

13 Cyber Apps

13.1 @CYBER_ACTIONS
Use this keyword to direct when the command will take place during the mode. If the commands
fail, then an alternate path may be taken.

Table 10: @CYBER_ACTIONS Data Fields

Data Field Explanation
start_code At what point during the mode should execution of the commands

begin
success_path If all commands are successful; refer to Table 11
failure_path If a command fails; refer to Table 12

Table 11: @CYBER_ACTIONS success_path Options

Data Field Explanation
AT_START At the beginning of the mode
AT_END At the end of the mode
AT_START_AND_END At the beginning and ending of the mode

AFTER_STABILITY
After Stability has been achieved. Refer to Section 7.2
@STABILITY_SPECS on page 11.)

Table 12: @CYBER_ACTIONS failure_path Options

Data Field Explanation
NULL NULL designates 'does not apply'

MODE_TERMINATE Allow the mode to end and execute the default_next_mode.

RETURN Return to the calling gp_test procedure.

90 Mode to mode 90 of this test

/specs/gp/gp_Cainit2 Execute the gp_test called gp_Cainit2

Example specifications:
@CYBER_ACTIONS
#start_code success_path failure_path
 AT_START MODE_TERMINATE 90

The preceding command orders the @CYBER keyword to execute its commands at the
beginning of the mode. If any commands fail, then move to mode 90 of the test. If all commands
are successful, then allow the mode to terminate and execute the default next mode.

Test Manager Support Tasks and Keywords

Version 6 21
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

13.2 @CYBER
Use @CYBER to issue a command to the Cyber application or to the CyberServer. The
command code will determine the action taken.

Table 13: @CYBER Data Fields

Data Field Explanation
command A command key; refer to Table 14
name The system or component name
value The system or component value

Table 14: @CYBER Commands and Arguments

Command Argument
CA_APPLICATION <application_name><application_file>

CA_COMPONENT <component_name><component_file>

CA_PARAMETER <parameter_name><parameter_value>

CA_LOAD <cyberapps_name>

CA_RUN

CA_PAUSE

CA_STOP

CA_BEGIN_CONFIG

CA_END_CONFIG

Example specification:
@CYBER
#command name value
CA PAUSE
CA_COMPONENT 'route' 'Indy38thSt'
CA_PARAMETER 'VehMass' 75000[lbs]
CA_RUN

The preceding commands configure CyberTruck to use the 38th Street route and set the
truck mass to 75000 pounds.

Test Manager Support Tasks and Keywords

Version 6 22
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

14 Unico Dyno Controller

Use the @UNICO_ACTIONS command to communicate with an UNICO controller running on
TCP/IP connection.

Table 15: @UNICO_ACTIONS Data Fields

Data Field Explanation

start_code Code for when to send the command. Options are:
AT_START | AFTER_STABILITY. Default is AT_START.

success_path
Code to specify action to take when communication is complete. Options
are: NONE | MODE_TERMINATE | RETURN | a mode number | a
procedure file pathname. Default is NONE.

fail_path
Code to specify action to take if communication fails. Options are:
NONE | MODE_TERMINATE | RETURN | a mode number | or a procedure
file pathname. Default is NONE.

Example specification:
@UNICO_ACTIONS
 #start_code success_path fail_path
 AT_START MODE_TERMINATE /specs/gp/quit

14.1 ECM Communications

14.1.1 @UNICO_GET
Use the @UNICO_GET command to obtain a value for a specific variable from the ECM.

Table 16: UNICO_GET Data Fields

Data Field Explanation

controller_variable
The name of a UNICO interface control variable. This may be a
constant, variable, or computed expression which resolves to a
valid ASSET label

ASSET_label The label of the variable where the result will be placed

Example specification:
@UNICO_GET
 #controller_variable ASSSET_label
 "'injector' + cyl_number" fixed_label

Test Manager Support Tasks and Keywords

Version 6 23
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

14.1.2 @UNICO_SET
Use the @UNICO_SET command to set a value for a specific variable from the ECM.

Table 17: @UNICO_SET Data Fields

Data Field Explanation

controller_variable
The name of a UNICO interface control variable. This may be
a constant, variable, or computed expression which resolves
to a valid ASSET label

value This may be a constant, variable label, or computed
expression.

Example specification:
@UNICO_GET
 #controller_variable value
 'Some_label' 100[none]

Test Manager Support Tasks and Keywords

Version 6 24
Proprietary and Confidential February 14, 2024 Test Manager Support Tasks and Keywords

15 Auxiliary Tasks

The Test Manager allows for the design of a general type of support task with no unique
purpose, but with a defined communication protocol with the Test Manager. An auxiliary task
can be designed to perform a special function within a test mode. It must support start and stop
events from the Test Manager and it must reply to the Test Manager when its function is
complete. The reply may indicate a SUCCESS or FAILURE. When starting the auxiliary task,
the Test Manager may provide it with command line arguments. This may be the name of a
specification file which the auxiliary task uses.
An example of an auxiliary task is performing an engine start. This procedure can be fairly
complicated and involve multiple stages. There may be different requirements for how to
perform an engine start from one engine or test to another.
Use the task engine_start to perform this function. It may be used in any test mode by
specifying the @AUXILIARY_TASK keyword. Refer to cyflex.com usage help for
engine_start for supplemental information.

Example specification:
@AUXILIARY_TASK
 #start_type stop_path failure_action
 AT_START MODE_TERMINATE ELSE_MODE
 #task_pathname "command_line"
 /asset/bin/engine_start "/specs/starter"

• Specify the name of the task in the task_pathname field.
• Specify the command line arguments are specified in the command_line field.

Enclose the command line in double quotes since it could contain multiple arguments.
• Specify a specification file for the engine_start utility.

15.1 Test Tables and vrbl_to_file Applications
The most commonly used auxiliary application is the vrbl_to_file application. Refer to
cyflex.com usage help for vrbl_to_file for supplemental information.

https://cyflex.com/index.php/usage-help-manual/12-test-manager/engine_start/
https://cyflex.com/index.php/usage-help-manual/12-test-manager/vrbl_to_file/

	1 Overview
	2 Handling of Support Applications
	3 Asynchronous Communication
	4 DEVCOM Device Communication
	4.1 @DEVCOM_ACTIONS
	4.2 @DEVCOM

	5 CUTY Communication
	5.1 @CUTY_ACTIONS
	5.2 CUTY_SET
	5.3 @CUTY_RAMP
	5.4 @CUTY_GET
	5.5 @CUTY_COMMAND_MESSAGE

	6 ASAM3 Communication
	6.1 @ASAM3_ACTIONS
	6.2 @ASAM3_SET
	6.3 @ASAM3_RAMP
	6.4 @ASAM3_GET
	6.5 @ASAM3_COMMAND_MESSAGE

	7 Stability
	7.1 @STABILITY_ACTION
	7.2 @STABILITY_SPECS

	8 Test Limits
	8.1 @LIMIT_SPECS
	8.2 @LIMIT_SPECS_ALL

	9 Test Compute
	10 Fuel Reading Control
	10.1 @FUEL_READING
	10.2 @FUEL_READING_SYNC

	11 Write Values
	12 State Monitor
	13 Cyber Apps
	13.1 @CYBER_ACTIONS
	13.2 @CYBER

	14 Unico Dyno Controller
	14.1 ECM Communications
	14.1.1 @UNICO_GET
	14.1.2 @UNICO_SET

	15 Auxiliary Tasks
	15.1 Test Tables and vrbl_to_file Applications

	Word Bookmarks
	Asynchronous_Communication

