

Monitoring Test Cell State (Variables) with
state_mon

Version 6
February 14, 2024

Developed by Transportation Laboratories

Monitoring Test Cell State (Variables) with
state_mon

Version 6 i
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

Version History
Version Date Revision Description

1 1/25/2016 Initial publication

2 8/23/2018 Format with SGS brand

3 4/3/2020 Retrofit to new template

4 12/2/2021 Added hypertext linked cross-reference to cyflex.com usage
help for state_mon in Section 1 Overview on page 1

5 5/31/2022 Updated hypertext linked cross-reference to cyflex.com usage
help for state_mon in Section 1 Overview on page 1

6 2/14/2024 Rebrand to TRP Laboratories

Document Conventions
This document uses the following typographic and syntax conventions.

• Commands, command options, file names or any user-entered input appear in Courier
type. Variables appear in Courier italic type.
Example: Select the cmdapp-relVersion-buildVersion.zip file….

• User interface elements, such as field names, button names, menus, menu commands,
and items in clickable dropdown lists, appear in Arial bold type.
Example: Type: Click Select Type to display drop-down menu options.

• Cross-references are designated in Arial italics.
Example: Refer to Figure 1…

• Click intra-document cross-references and page references to display the stated
destination.
Example: Refer to Section 1 Overview on page 1.

The clickable cross-references in the preceding example are 1, Overview, and
on page 1.

CyFlex Documentation
CyFlex documentation is available at https://cyflex.com/. View Help & Docs topics or use the
Search facility to find topics of interest.

https://cyflex.com/

Monitoring Test Cell State (Variables) with
state_mon

Version 6 ii
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

Table of Contents
1 OVERVIEW .. 1

2 STATE_MON MODES OF OPERATION .. 2

2.1 MODE OF OPERATION FOR ACTIONS WITH NO EXTENSIONS ... 2

2.1.1 Specifying State Variables .. 3

3 GP_TEST KEYWORDS .. 4

3.1 @STATE_MON_ACTIONS .. 4
3.2 @STATE_MON_SPEC_FILES .. 5

3.3 @STATE_MON_EXCEPTIONS ... 5

3.4 STATE_MON OUTPUT TO GP_TEST .. 6

3.5 TERMINATION PATHS ... 6

4 SPECIFICATION FILE CONTENT .. 7

APPENDICES ... 9
APPENDIX A. STATE_MON ACTIONS FOR STATE VARIABLES .. 9

APPENDIX B. HORIZONTAL LABELS STATE_MON SPECIFICATIONS ... 12

APPENDIX C. VERTICAL LABELS STATE_MON SPECIFICATIONS ... 13

APPENDIX D. GP_TEST KEYWORDS FOR STATE_MON ... 14

APPENDIX E. GP_TEST TRACE INFORMATION GENERATED BY STATE_MON .. 15

Monitoring Test Cell State (Variables) with
state_mon

Version 6 1
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

1 Overview

Occasionally there is a need to periodically check a group of variables and allow different action
to be performed depending on the combined value of the variables. For example:

• If all the following are TRUE at any time:
o No flames are detected in the test cell.
o The test cell doors are closed.
o The ignition key switch is turned on.
o The combustion air temperature is less than the allowed maximum.

• Then, the engine may be started.
• Otherwise, the engine may not be started.

To accomplish the preceding, using basic CyFlex Test Manager (gp_test) capabilities could
result in a test procedure that is complicated. This is particularly true if many variables need to
be checked. To better address this, use the gp_test support process state_mon. This
process is called from a gp_test test mode and checks the values of a group of variables.
The checked variables are specified in a specification file(s) read by state_mon. When the
variables are in the appropriate state, state_mon signals gp_test to proceed to the next
appropriate test mode.
Refer to Introduction to state_mon and cyflex.com usage help for state_mon for additional
reference.

https://cyflex.com/wp-content/uploads/state_mon-introduction.pdf
https://cyflex.com/index.php/usage-help-manual/12-test-manager/state_mon/

Monitoring Test Cell State (Variables) with
state_mon

Version 6 2
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

2 state_mon Modes of Operation

When state_mon is called in a gp_test mode, the calling arguments define how the state
variables specified in a spec file, should be watched. There are three ways that the state
variables may be watched:

1. MONITOR mode to verify that all variables remain in the specified states
2. IMMEDIATE mode to determine the current state of the variables
3. VERIFY mode to verify that all variables have reached the specified states

Each specified variable has an action, (e.g. equality, EQ) associated with it. In addition, each
action may include one of three possible extensions (e.g. critical, _C). As a result, the state
variables fall into one of two groups:

1. Variables with action extensions specified
2. Variables without action extensions

Refer to Section 2.1.1 Specifying State Variables on page 3.
When state_mon is called, the current value of each variable is checked. If any of the
variables with an action extension specified fail, then gp_test is immediately signaled to
proceed to one of the three return modes associated with the extension. This occurs regardless
of the state_mon mode of operation except for the case when variables that have an action
specified without an extension.

2.1 Mode of Operation for Actions with no Extensions
When state_mon is called with the MONITOR mode specified, it is assumed that all the
variables have the correct value when the mode is executed. The variables are periodically
checked at the rate specified in the specification file. If any of the variables fail the state check,
the gp_test procedure advances to the next appropriate mode. Otherwise, the test procedure
will remain in the mode until a variable fails or a ‘timeout’ occurs Refer to Section 3 gp_test
Keywords on page 4.
When called with the IMMEDIATE mode specified, each variable is checked once. After they
have all been checked, the procedure advances to the next appropriate mode. As a result, the
next mode may be one of five possible return modes associated with the state variables. (four
different failure returns and a success return.
When called in the VERIFY mode, it is assumed that some variables that have associated
actions without extensions do not have the specified value. While in this gp_test mode the
value of all variables are periodically checked. The test remains in the mode until all variables
reach their specified state, then the test advances to the ‘success’ mode.
Also, an optional timeout specification will cause state_mon to advance to the specified
timeout mode. This will occur regardless of the values of the state variables. The timeout value
is the maximum time to check the variables.

Monitoring Test Cell State (Variables) with
state_mon

Version 6 3
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

2.1.1 Specifying State Variables
To perform the function associated with each of the three possible modes of operations,
state_mon must know the following:

• The variables to watch
• The action associated with each variable
• The desired state of each variable
• The periodic rate that the variables should be checked

The desired value of a specified state variable may be different depending on which step is
being executed in the testing process. As a result, there can be groups of desired values for
each specified variable. Therefore, there needs to be a mechanism available to state_mon
that identifies which group of specified states to use when checking the variables. This is
accomplished by associating a string or ‘index’ with each group of states. This information, as
well as the above four items, is contained in a specification file(s) that is read by state_mon.

When state_mon is called from a gp_test mode, it receives information that indicates:
• The specification file(s) that should be read
• Which group of state values should be watched
• The desired mode for state_mon

Once the specification file has been read, the checking of the variables begins. Depending on
the mode of state_mon, after each check of the variables gp_test may be signaled to go to
the next appropriate mode. For example, assume the following:

• All the state variables that have an action specified with an extension equals the
specified value .i.e. the combined state of the variables is TRUE. Refer to Appendix A.
state_mon actions for State Variables on page 9.

• Some of the state variables that have an action specified without an extension are not
equal to the specified state; .i.e. the combined state of these variables is FALSE.

If the state_mon mode is VERIFY, then continue to check the state variables value

If the state_mon mode is MONITOR, then gp_test is signaled to go to the failure mode

If the state_mon mode is IMMEDIATE, then gp_test is signaled to go to the failure
mode.
Note:

gp_test is always signaled after the first check of the state variables value for this mode.

Monitoring Test Cell State (Variables) with
state_mon

Version 6 4
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

3 gp_test Keywords

As previously mentioned, state_mon may be in one of three modes, VERIFY, MONITOR, or
IMMEDIATE. gp_test will be signaled to proceed to the next appropriate mode when the
state variables have reached the appropriate value. The appropriate value depends on the
mode of state_mon.

The configuration information needed by state_mon is provided via gp_test keywords that
are specified in a particular test mode. Refer to the Test Manager User Guide for details on
developing a complete test procedure. The state_mon keywords are:

• @STATE_MON_ACTIONS

• @STATE_MON_SPEC_FILES

• @STATE_MON_EXCEPTIONS
Refer to the following:

• Appendix D. gp_test Keywords for state_mon on page 14 for an example gp_test
procedure specification.

• Appendix E. gp_test Trace Information Generated by state_mon on page 15 for the
information that is written to the TRACE file when the test procedure is in a state_mon
mode

3.1 @STATE_MON_ACTIONS
 <successful return path> <failure return path> <read mode>
<state_mon mode>

Where:

• <successful return path> is the next mode to be executed when
state_mon returns normally. This may be MODE_TERMINATE, NONE, another
number, or another gp_test procedure.

• <failure return path> is the next mode to be executed when state_mon
returns with a failed condition. This may be MODE_TERMINATE, NONE, another
number, or another gp_test procedure.

• <read mode> informs state_mon how to read the specification file(s). Valid
entries for this field are READ or READ_ONCE. For READ, the spec file is read
every time the test mode is executed. However, for READ_ONCE, the spec file is
read only once.

• <state_mon mode> is the desired mode for state_mon when checking the
variables. Valid entries are VERIFY, MONITOR, and IMMEDIATE.

https://cyflex.com/wp-content/uploads/Test-Manager-Program.pdf

Monitoring Test Cell State (Variables) with
state_mon

Version 6 5
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

3.2 @STATE_MON_SPEC_FILES
 <spec file pathname> <state index>

 Where:

• <spec file pathname> is the full pathname of the state_mon
specifications. There can be a maximum of sixteen specification files.

• <state_index> is the label of the variable that will contain the index value
that indicates which group of state values should be read from the file. This can
also be thought of as which column should be processed. (VERTICAL_LABELS
file format).

3.3 @STATE_MON_EXCEPTIONS
There are also exceptions that will result in the gp_test procedure advancing to the specified
exception mode. The exception mode to be taken is specified by the extension to the specified
action for each variable. These modes are specified via the @STATE_MON_EXCEPTION
gp_test keyword. The exceptions are:

• The specified length of time to check the variables has expired.
• A variable with a critical action extension (_C) has failed its check.
• A variable with a warning action extension (_W) has failed its check.
• A variable with a state_change’action extension (_S) has failed its check.
• An error occurred when reading the specification file.

@STATE_MON_EXCEPTIONS
<timeout> <timeout> <state change> <critical failure> <warning failure> <read error>
 <path> <path> <path> <path> <path>

Where:
• <timeout> is the maximum length of time to allow the variables to be checked.

Valid entries are a value, a CyFlex label, or a computed expression. For
example, 23[sec]. This entry, although valid for all modes, is only relevant for the
VERIFY and MONITOR modes.

• <timeout path> is the path that should be taken when a timeout occurs. This
may be MODE_TERMINATE, NONE, another number, or another gp_test
procedure.

• <state change path> is the path that should be taken when a variable with
an action extension of _S fails its check.

• <critical failure path> is the path that should be taken when a
variable with an action extension of _C fails its check.

• <warning failure path> is the path that should be taken when a variable
with an action extension of _W fails its check.

• <read error path> is the path that should be taken when an error is
detected reading the specification file.

Monitoring Test Cell State (Variables) with
state_mon

Version 6 6
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

3.4 state_mon output to gp_test
The information that state_mon returns to gp_test contains the state of seven different
conditions,

1. Critical variable failure
2. Warning variable failure
3. State change failure
4. Failure return
5. Success return
6. The length of time to check the state variables has expired
7. An error occurred reading the specification file

3.5 Termination Paths
Since more than one condition may exist that imply different termination paths, there are rules of
precedence for the termination paths. Assuming that there are paths specified for all exceptions,
the rules of precedence are:
If an error occurred reading the specification file, then take the read_error termination path

If a timeout exception occurred, then take the timeout termination path.

If a _S variable failed, then take the state_change termination path.

If a _C variable failed then, take the critical termination path.

If a _W variable failed, then take the warning termination path.

If a failure return occurred, then take the failure return.

If a success return occurred, then take the success return.

Monitoring Test Cell State (Variables) with
state_mon

Version 6 7
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

4 Specification File Content

The specification file, a flat ASCII file, provides the following basic information to state_mon:
• A list of variables that should be checked
• How often the variables should be checked
• A list of values that should be associated with each variable
• A list of indices that should be assigned to each value specified for the variable

The specification file may have one of two fundamental formats:

• The variables to be watched may be listed on a single line in HORIZONTAL_LABELS
format. This format is typically used when there are a limited number of variables to
watch. Refer to Appendix B. Horizontal Labels state_mon Specifications on page 12.

• The variables to be watched may be listed on multiple lines in VERTICAL_LABELS
format. This format is typically used when there are many variables to be watched. Refer
to Appendix C. Vertical Labels state_mon Specifications on page 13.

For each variable, an action code and, optionally, an extension may be specified. The action
code indicates the action that should be performed when it is checked. The extension indicates
how a state failure should be interpreted. For example, the action may indicate that an equality
(EQ) test should be performed and that the extension indicates that the test is ‘critical’. This
would result in the complete action being EQ_C. Refer to Appendix A. state_mon actions for
State Variables on page 9.
For the file format HORIZONTAL_LABELS, specify each variable and action on a single line in
the text file. Specify the desired state value for each of the specified variables on lines following
the specified variables. Preceding the values is the string or state index that will be used to
identify each group of values. Additional lines may be added for each additional state index and
group of state values. There must be an entry specified for each specified variable. The first
specified state value would be associated with the first specified variable; the second state
value would be associated with the second variable
If the file format is VERTICAL_LABELS, the specified state indices and variables are
transposed. Specify all the state indices that will be used to identify a group of state values on a
single line. Specify the state values for each of the state indices are on a single line preceded by
the variable specification. Specify one state value for each state index. The association of the
state values is also transposed.

• For the VERTICAL_LABELS format, each state value on a given line is associated with
each specified state index.

• If the file format is HORIZONTAL_LABELS, each state value, on a given line, is
associated with each specified variable.

Each state value may have additional information associated with it. For example, if the state
action for a variable is a limit violation check, then the value may have a time associated with it.
The time is the specified length of time the limit must be violated before the limit will actually be
violated. Refer to Appendix A. state_mon actions for State Variables on page 9 for the details on
specifying state values.

Monitoring Test Cell State (Variables) with
state_mon

Version 6 8
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

Consider the excerpt below from a spec file that has the VERTICAL_LABELS format. The
variable being monitored is oilrfl_t and the monitor action is a low limit that has an
extension of warning. There are three possible ‘values’ for the lower limit. In two cases, the
value is the value of the variable cmp_in_t. For the third case, the value of oilrfl_t will
not be monitored, since the specified value of DC (Don’t Care) was given. When the state index
variable, as specified under the gp_test @STATE_MON_SPEC_FILES keyword, has a
value of 44, then oilrfl_t will be monitored. If its value is less than the value of cmp_in_t,
then the state of oilrfl_t will be failed since the lower limit was violated. What happens
in the gp_test mode that called state_mon depends on the action code that was specified
under the @STATE_MON_ACTIONS keyword. If the action code was VERIFY, then the
variable will continue to be watched. However, if the action code was MONITOR, gp_test will
be signaled to exit the current mode. If a path was specified for a ‘failure’ as part of the
@STATE_MON_ACTIONS keyword, that path is taken. Otherwise, the ‘default next mode’ is
taken.

state
index index value index value index value

@STATE_INDICES
 44 twelve 5

@STATE_VALUES_TABLE

variable:action value value value

oilrfl_t:LO cmp_in_t cmp_in_t:4[sec] DC

Monitoring Test Cell State (Variables) with
state_mon

Version 6 9
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

Appendices

Appendix A. state_mon actions for State Variables
The variable to be watched is specified in the state_mon spec file under one of two keywords.

• If the spec file format is VERTICAL_LABELS, it is specified as the first field of each
entry under the @STATE_VALUES_TABLE keyword.

• If the file format is HORIZONTAL_LABELS, it is specified under the
@STATE_VARIABLES keyword.

In either case, the format of the state variable entry is as follows:
 variable_lbl:action

Where:
• <variable_lbl> is the label of the Cyflex variable that is to be watched.
• <action> is the type of action that should be performed when watching the

variable.
The action field falls into the following classes and it must be one of the strings (case-
insensitive) listed for each class.

• Limits
o LO_C < lower limit – critical
o LO_W < lower limit – warning
o LO_S < lower limit – state change
o LO < lower limit
o UP_C < upper limit – critical
o UP_W < upper limit - warning
o UP_S < upper limit – state_change
o UP < upper limit

• Equality
o NE_C < not equal – critical
o NE_W < not equal – warning
o NE_S < not equal – state change
o NE < not equal
o EQ_C < equal – critical
o EQ_W < equal - warning
o EQ_S < equal - state change
o EQ < equal

• Statistical Deviation
o DV_C < deviation – critical
o DV_W < deviation – warning
o DV_S < deviation – state change
o DV < deviation

Monitoring Test Cell State (Variables) with
state_mon

Version 6 10
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

• Statistical Variance
o VR_C < variance – critical
o VR_W < variance – warning
o VR_S < variance – state change
o VR < variance
o CV_C < coef of var – critical
o CV_W < coef of var – warning
o CV_S < coef of var – state change
o CV < coef of var

• Time Delay; for this action, the variable is a dash (-)
o TD_C < time delay – critical
o TD_W < time delay - warning

All values for a state variable that are specified under the @STATE_VALUES_TABLE keyword
may be computed expressions. The formats of the value entry for the above classes are:

• Limits
state_value:window_duration
where:

o state_value is the value of the limit
o window_duration is the time the variable must be violated before the

limit is actually violated.
• Equality

state_value
where:

o state_value is the value for the equality test
• Statistical Deviation

state_value:tolerance:window_duration
where:

o state_value is the base value used to determine the minimum and
maximum values.

o tolerance is the value that is added or subtracted to the
state_value to determine the minimum and maximum allowed values.

o window_duration is the time window width for the statistical variable.
• Statistical Variance

state_value:window_duration
where:

o state_value is the base value used to determine the minimum and
maximum values.

o window_duration is the time window width for the statistical variable.

Monitoring Test Cell State (Variables) with
state_mon

Version 6 11
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

• Time Delay
state_value
where:

o state_value is the value of the time delay

Monitoring Test Cell State (Variables) with
state_mon

Version 6 12
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

Appendix B. Horizontal Labels state_mon Specifications
@FILE_FORMAT
 HORIZONTAL_LABELS

the following defines the rate at which the variables are
monitored

@PROCESS_INTERVAL
 1000

@STATE_VARIABLES
 Engine_Run:Eq_S oilrfl_t:vr_w oilrfl_p:dv

The ‘state index’ that precedes the state values may be an
integer variable or a string variable

state
index value value value

@STATE_VALUES_TABLE

 44 0 cmp_in_t:1[sec] rail_p:122[psi]:4[sec]
 Twelve TRUE cmp_in_t:2[sec] rail_p:22[psi]:8[sec]

Monitoring Test Cell State (Variables) with
state_mon

Version 6 13
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

Appendix C. Vertical Labels state_mon Specifications
@FILE_FORMAT
 VERTICAL_LABELS

the following defines the rate at which the variables are
monitored

@PROCESS_INTERVAL
 .5[sec]

The ‘state index’ may be an integer variable or a string
variable

state
index index value index value index value

@STATE_INDICES
 44 12 five

@STATE_VALUES_TABLE

variable:action value value value

Engine_Run:EQ_S 0 not_running -

Safety_Trip:EQ TRUE FALSE -

oilrfl_t:lo_w cmp_in_t:3[sec] cmp_in_t:4[sec] DC

oilrfl_p:dv_c rail_p:122[psi]:4[sec] "rail_p:22[psi]:3[sec]
-

clnt_sw:EQ_C 0 1 -

ecm_model:EQ_W DC 'cm870'

Monitoring Test Cell State (Variables) with
state_mon

Version 6 14
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

Appendix D. gp_test Keywords for state_mon
The following is an example of the keywords that should be placed in a test procedure mode
when the CyFlex variables should be monitored. For this example:

• When state_mon indicates a normal or successful return, the next mode will be the
default next mode.

• When state_mon indicates a failure return, the next mode will be mode 100.
• The specification file is /specs/gp/stbls/stbl_CLD1_tree and it should be

read only once at start up.
• When a warning variable failed to meet the specified state, the next mode will be the

default next mode.
• When a critical variable failed to meet the specified state, the next mode will be

mode 91.
• When a state_change variable failed to meet the specified state, the next mode will

be mode 110.
• When an error occurs when reading the specification file, the next mode will be mode

105.
• The group of specified states that should be used when monitoring the variables is

specified in the CyFlex variable CL1TreMdDsc.
• The desired monitor action is specified in the CyFlex variable CL1TreStMAct.
• The maximum length of time to monitor the variables is specified in the variable

CL1TreMdTOt.
@STATE_MON_ACTIONS
 #success_path failure_return_path read_mode action_code
 MODE_TERMINATE 100 READ_ONCE CL1TreStMAct

@STATE_MON_EXCEPTION_PATHS
timeout timeout state change warning failure critical failure read
error
 # path path path path path
CL1TreMdT 90 110 91 MODE_TERMINATE 105

@STATE_MON_SPEC_FILES
 #file_list (16 maximum) state_index
 /specs/gp/stbls/stbl_CLD1_tree CL1TreMdDsc

Monitoring Test Cell State (Variables) with
state_mon

Version 6 15
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

Appendix E. gp_test Trace Information Generated by state_mon
Below is a example snippet of the diagnostic trace information generated when state_mon
has been called from a gp_test mode. The basic information provided is as follows:

• The first line indicates the PID of the state_mon becoming active (6735), how the
specification files should be read (read_once) and the number of specifications being
read (5).

• The second line indicates the MONITOR operational mode for state_mon.
• Next is a heading that describes the information that will be written to the TRACE file.
• Following the heading is the value of the state index that was used to determine which

group of values should be used when the specified variables are checked. The first
specification file had an index value of ok.

• After the state index value is the information associated with each state variable being
checked.

As indicated by the TRACE, all the variables have been ‘verified’ and they are now going to be
‘monitored’. It is important to know the state of all the variables when state_mon is called;
therefore, the information for all variables is written to the TRACE file when state_mon is initially
called.
Looking at the first informational line written, the following information is provided:

• Time the variable was checked: 0.00
• A number indicating which specification file specified under the

@STATE_MON_SPEC_FILES keyword contains the state variable (0). This indicates
that the first file specified is being used.

• The label of the variable being checked: cah_frz_sts
• The action associated with the variable: EQ_S
• Whether or not the possible action extensions for the variable passed the check,

(1,1,1,1) The one that is relevant (state passed) is indicated by the specified action
extension: _S. All others are defined to have passed.

• The actual value of the variable: ok
• The expected value of the variable as specified in the spec file: 1

As expected, all the variables passed their checks when the mode was first executed. The test
procedure stayed in the mode for 2908.12 seconds. At this time the variable air_mf_lim
changed from a value of ok’ to low_flow. When this happened, the mode was terminated
and gp_test was signaled to take the state_change failure path.
---------------------- TRACE file snippet ------------------------------
.
.
gp_state_mon.cah,134 | State VERIFIED, now MONITOR. Exit on state change.
 T/D-12:19:04 01/13/14

smCFG to 6735 action=MONITOR read_once=1 nfiles=5

Monitoring Test Cell State (Variables) with
state_mon

Version 6 16
Proprietary and Confidential February 14, 2024 Monitoring Test Cell State (Variables) with state_mon

state_mon - start of MONITOR mode - 01/13/14 12:19:04.30

 time:(file_num) vrbl_name:state (crit,warn,state,vrbl) actual,
expected
 action (pass pass pass pass) value value
 state_index = ok ---------
 time= 0.00:(0) cah_frz_sts:EQ_S (1, 1, 1, 1) ok, 1
 time= 0.00:(0) engine_run:EQ_S (1, 1, 1, 1) Don't Care Spec
 time= 0.00:(0) cah_fault:EQ_S (1, 1, 1, 1) ok, 0
 state_index = enable_on ---------
 time= 0.00:(1) cah_en_sts:EQ_S (1, 1, 1, 1) on, 1
 time= 0.00:(1) cah_cold_lim:EQ_S (1, 1, 1, 1) Don't Care Spec
 time= 0.00:(1) safe_status:EQ_S (1, 1, 1, 1) safe, safe
 time= 0.00:(1) engine_run:EQ_S (1, 1, 1, 1) Don't Care Spec
 state_index = damp_open ---------
 time= 0.00:(2) cah_sup_dmp_op:EQ_S (1, 1, 1, 1) open, 1
 time= 0.00:(2) enable_status:EQ_S (1, 1, 1, 1) on, on
 time= 0.00:(2) engine_run:EQ_S (1, 1, 1, 1) Don't Care Spec
 state_index = exitP_damp_open_okP ---------
 time= 0.00:(3) cah_otP_lim:EQ_S (1, 1, 1, 1) ok, 1
 time= 0.00:(3) damp_status:EQ_S (1, 1, 1, 1) open, open
 time= 0.00:(3) engine_run:EQ_S (1, 1, 1, 1) Don't Care Spec
 state_index = flow_ok_run ---------
 time= 0.00:(4) air_mf_lim:EQ_S (1, 1, 1, 1) ok, 1
 time= 0.00:(4) pressure_status:EQ_S (1, 1, 1, 1) run, run
 time= 0.00:(4) engine_run:EQ_S (1, 1, 1, 1) running, 1

 state_index = flow_ok_run ---------
 time=2908.12:(4) air_mf_lim:EQ_S (1, 1, 0, 1) low_flow, 1

 T/D-13:07:32 01/13/14
 state_mon - state_mon state change - took state_change exit path
specified

	1 Overview
	2 state_mon Modes of Operation
	2.1 Mode of Operation for Actions with no Extensions
	2.1.1 Specifying State Variables

	3 gp_test Keywords
	3.1 @STATE_MON_ACTIONS
	3.2 @STATE_MON_SPEC_FILES
	3.3 @STATE_MON_EXCEPTIONS
	3.4 state_mon output to gp_test
	3.5 Termination Paths

	4 Specification File Content
	Appendices
	Appendix A. state_mon actions for State Variables
	Appendix B. Horizontal Labels state_mon Specifications
	Appendix C. Vertical Labels state_mon Specifications
	Appendix D. gp_test Keywords for state_mon
	Appendix E. gp_test Trace Information Generated by state_mon

