

Computing Volumetric Efficiency

Version 6

March 6, 2024

Developed by Transportation Laboratories

Version History

Version	Date	Revision Description
1	1/25/2016	Initial publication
2	8/23/2018	Format with SGS Brand
3	4/9/2020	Retrofit to new template
4	12/14/2021	Removed volef usage content from Section 2 Starting the Application on page 2 and added hypertext linked cross-reference to its cyflex.com usage help.
5	6/16/2022	Updated hypertext linked cross-reference to cyflex.com usage description for volef in Section 2 Starting the Application on page 2
6	3/6/2024	Rebrand to TRP Laboratories

Document Conventions

This document uses the following typographic and syntax conventions.

- Commands, command options, file names or any user-entered input appear in Courier type. Variables appear in Courier italic type.
 - **Example**: Select the cmdapp-relVersion-buildVersion.zip file....
- User interface elements, such as field names, button names, menus, menu commands, and items in clickable dropdown lists, appear in Arial bold type.
 - Example: **Type**: Click **Select Type** to display drop-down menu options.
- Cross-references are designated in Arial italics.
 - Example: Refer to Figure 1...
- Click intra-document cross-references and page references to display the stated destination.
 - Example: Refer to Section 1 Overview on page 1.

The clickable cross-references in the preceding example are 1, Overview, and on page 1

CyFlex Documentation

CyFlex documentation is available at https://cyflex.com/. View Help & Docs topics or use the Search facility to find topics of interest.

Table of Contents

۸D	DENDIY A SDECIEICATION EILE	
2	STARTING THE APPLICATION	2
1	OVERVIEW	1

1 Overview

Use the volef application to compute volumetric efficiency for a single manifold on a continuous basis.

If an engine has multiple manifolds, run this application for each manifold.

This application is usually started in the go.scp script that starts CyFlex.

2 Starting the Application

Enter volef to start the application.

Refer to volef usage help on cyflex.com for command syntax.

Appendix A. Specification File

The following is an example spec file used for volef.

```
#line 1
                  - the label of the variable where the computed
   volef manifold
                     result will be placed for volumetric efficiency
                     referenced to manifold pressure and temperature
#line 2
                  - the number of engine cylinders supplied by this
  num cyl
                     manifold. This may be specified as a constant
                     variable, or computed expression. This is normally
#
                     n cyl or "n cyl / 2[none]", etc.
#
#
                  - the label of variable where the barometric
  barometer
                     pressure can be found
  mnfld pres
                  - the label of the variable which measures the
                     manifold gauge pressure
#
                  - the label of the variable which measures the
  mnfld temp
                     manifold temperature
#
          ( enter a line for each gas or air flow stream entering
#line 3-n
            the manifold )
#
 mass flow
                    - the mass flow rate of a flow stream
                      ( for air, this should be the wet mass flow )
                    - the name of a composition variable defining
 gas composition
                     the stream. For diesels, this is usually the
 variable
                      inlet air stream. For natural gas engines it
                      is the stream which contains the mixture of
#
                      inlet air and natural gas.
# volef manifold
   volef int
# num cyl
          barometer mnfld pres mnfld temp
          barometer int mnf p int mnf t
   n cyl
# mass flow
               gas composition variable
 air mtr0 mf
                inlet airC.
```